34 resultados para high-molecular-weight glutenin subunit(HMW-GS)
Resumo:
The mechanism(s) that regulates invasion of trophoblasts through the uterine epithelium during embryo implantation and nidation in hemochorial placental mammals is poorly understood. While limited trophoblast invasion is essential for the establishment of normal pregnancy, dysregulation of this process may contribute to the pathogenesis of choriocarcinoma, a highly invasive and lethal form of cancer arising from the trophoblasts. We have previously demonstrated that rabbit uteroglobin (UG), a cytokine-like, antiinflammatory protein, produced by the endometrial epithelium during pregnancy, has a potent antichemotactic effect on neutrophils and monocytes in vitro. Here, we report that recombinant human UG (hUG) dramatically suppresses invasion of human trophoblasts and NIH 3T3 cells through an artificial basement membrane (Matrigel) in vitro but has no effect on that of human choriocarcinoma cells. We identified a previously unreported high-affinity, high molecular weight (approximately 190 kDa), nonglycosylated hUG-binding protein, readily detectable on human trophoblasts and NIH 3T3 cells but totally lacking on choriocarcinoma cells. Taken together, these results raise the possibility that (i) hUG plays a critical role in regulating cellular invasiveness, at least in part, via its previously unrecognized cell surface binding site, and (ii) some of the numerous biological activities of proteins of the UG family, reported so far, may be mediated via this binding site.
Resumo:
The retinoids are reported to reduce incidence of second primary aerodigestive cancers. Mechanisms for this chemoprevention are previously linked to all-trans retinoic acid (RA) signaling growth inhibition at G1 in carcinogen-exposed immortalized human bronchial epithelial cells. This study investigated how RA suppresses human bronchial epithelial cell growth at the G1-S cell cycle transition. RA signaled growth suppression of human bronchial epithelial cells and a decline in cyclin D1 protein but not mRNA expression. Exogenous cyclin D1 protein also declined after RA treatment of transfected, immortalized human bronchial epithelial cells, suggesting that posttranslational mechanisms were active in this regulation of cyclin D1 expression. Findings were extended by showing treatment with ubiquitin-dependent proteasome inhibitors: calpain inhibitor I and lactacystin each prevented this decreased cyclin D1 protein expression, despite RA treatment. Treatment with the cysteine proteinase inhibitor, E-64, did not prevent this cyclin D1 decline. High molecular weight cyclin D1 protein species appeared after proteasome inhibitor treatments, suggesting that ubiquitinated species were present. To learn whether RA directly promoted degradation of cyclin D1 protein, studies using human bronchial epithelial cell protein extracts and in vitro-translated cyclin D1 were performed. In vitro-translated cyclin D1 degraded more rapidly when incubated with extracts from RA treated vs. untreated cells. Notably, this RA-signaled cyclin D1 proteolysis depended on the C-terminal PEST sequence, a region rich in proline (P), glutamate (E), serine (S), and threonine (T). Taken together, these data highlight RA-induced cyclin D1 proteolysis as a mechanism signaling growth inhibition at G1 active in the prevention of human bronchial epithelial cell transformation.
Resumo:
The high-molecular-weight serine proteinase inhibitors (serpins) are restricted, generally, to inhibiting proteinases of the serine mechanistic class. However, the viral serpin, cytokine response modifier A, and the human serpins, antichymotrypsin and squamous cell carcinoma antigen 1 (SCCA1), inhibit different members of the cysteine proteinase class. Although serpins employ a mobile reactive site loop (RSL) to bait and trap their target serine proteinases, the mechanism by which they inactivate cysteine proteinases is unknown. Our previous studies suggest that SCCA1 inhibits papain-like cysteine proteinases in a manner similar to that observed for serpin–serine proteinase interactions. However, we could not preclude the possibility of an inhibitory mechanism that did not require the serpin RSL. To test this possibility, we employed site-directed mutagenesis to alter the different residues within the RSL. Mutations to either the hinge or the variable region of the RSL abolished inhibitory activity. Moreover, RSL swaps between SCCA1 and the nearly identical serpin, SCCA2 (an inhibitor of chymotrypsin-like serine proteinases), reversed their target specificities. Thus, there were no unique motifs within the framework of SCCA1 that independently accounted for cysteine proteinase inhibitory activity. Collectively, these data suggested that the sequence and mobility of the RSL of SCCA1 are essential for cysteine proteinase inhibition and that serpins are likely to utilize a common RSL-dependent mechanism to inhibit both serine and cysteine proteinases.
Resumo:
The GTPase dynamin has been clearly implicated in clathrin-mediated endocytosis of synaptic vesicle membranes at the presynaptic nerve terminal. Here we describe a novel 52-kDa protein in rat brain that binds the proline-rich C terminus of dynamin. Syndapin I (synaptic, dynamin-associated protein I) is highly enriched in brain where it exists in a high molecular weight complex. Syndapin I can be involved in multiple protein–protein interactions via a src homology 3 (SH3) domain at the C terminus and two predicted coiled-coil stretches. Coprecipitation studies and blot overlay analyses revealed that syndapin I binds the brain-specific proteins dynamin I, synaptojanin, and synapsin I via an SH3 domain-specific interaction. Coimmunoprecipitation of dynamin I with antibodies recognizing syndapin I and colocalization of syndapin I with dynamin I at vesicular structures in primary neurons indicate that syndapin I associates with dynamin I in vivo and may play a role in synaptic vesicle endocytosis. Furthermore, syndapin I associates with the neural Wiskott-Aldrich syndrome protein, an actin-depolymerizing protein that regulates cytoskeletal rearrangement. These characteristics of syndapin I suggest a molecular link between cytoskeletal dynamics and synaptic vesicle recycling in the nerve terminal.
Resumo:
Previous studies showed that components implicated in pre-rRNA processing, including U3 small nucleolar (sno)RNA, fibrillarin, nucleolin, and proteins B23 and p52, accumulate in perichromosomal regions and in numerous mitotic cytoplasmic particles, termed nucleolus-derived foci (NDF) between early anaphase and late telophase. The latter structures were analyzed for the presence of pre-rRNA by fluorescence in situ hybridization using probes for segments of pre-rRNA with known half-lives. The NDF did not contain the short-lived 5′-external transcribed spacer (ETS) leader segment upstream from the primary processing site in 47S pre-rRNA. However, the NDF contained sequences from the 5′-ETS core, 18S, internal transcribed spacer 1 (ITS1), and 28S segments and also had detectable, but significantly reduced, levels of the 3′-ETS sequence. Northern analyses showed that in mitotic cells, the latter sequences were present predominantly in 45S-46S pre-rRNAs, indicating that high-molecular weight processing intermediates are preserved during mitosis. Two additional essential processing components were also found in the NDF: U8 snoRNA and hPop1 (a protein component of RNase MRP and RNase P). Thus, the NDF appear to be large complexes containing partially processed pre-rRNA associated with processing components in which processing has been significantly suppressed. The NDF may facilitate coordinated assembly of postmitotic nucleoli.
Resumo:
Detergent-insoluble complexes prepared from pig small intestine are highly enriched in several transmembrane brush border enzymes including aminopeptidase N and sucrase-isomaltase, indicating that they reside in a glycolipid-rich environment in vivo. In the present work galectin-4, an animal lectin lacking a N-terminal signal peptide for membrane translocation, was discovered in these complexes as well, and in gradient centrifugation brush border enzymes and galectin-4 formed distinct soluble high molecular weight clusters. Immunoperoxidase cytochemistry and immunogold electron microscopy showed that galectin-4 is indeed an intestinal brush border protein; we also localized galectin-4 throughout the cell, mainly associated with membraneous structures, including small vesicles, and to the rootlets of microvillar actin filaments. This was confirmed by subcellular fractionation, showing about half the amount of galectin-4 to be in the microvillar fraction, the rest being associated with insoluble intracellular structures. A direct association between the lectin and aminopeptidase N was evidenced by a colocalization along microvilli in double immunogold labeling and by the ability of an antibody to galectin-4 to coimmunoprecipitate aminopeptidase N and sucrase-isomaltase. Furthermore, galectin-4 was released from microvillar, right-side-out vesicles as well as from mucosal explants by a brief wash with 100 mM lactose, confirming its extracellular localization. Galectin-4 is therefore secreted by a nonclassical pathway, and the brush border enzymes represent a novel class of natural ligands for a member of the galectin family. Newly synthesized galectin-4 is rapidly “trapped” by association with intracellular structures prior to its apical secretion, but once externalized, association with brush border enzymes prevents it from being released from the enterocyte into the intestinal lumen.
Resumo:
The fungus Trichoderma harzianum is a potent mycoparasite of various plant pathogenic fungi. We have studied the molecular regulation of mycoparasitism in the host/mycoparasite system Botrytis cinerea/T. harzianum. Protein extracts, prepared from various stages of mycoparasitism, were used in electrophoretic mobility-shift assays (EMSAs) with two promoter fragments of the ech-42 (42-kDa endochitinase-encoding) gene of T. harzianum. This gene was chosen as a model because its expression is triggered during mycoparasitic interaction [Carsolio, C., Gutierrez, A., Jimenez, B., van Montagu, M. & Herrera-Estrella, A. (1994) Proc. Natl. Acad. Sci. USA 91, 10903–10907]. All cell-free extracts formed high-molecular weight protein–DNA complexes, but those obtained from mycelia activated for mycoparasitic attack formed a complex with greater mobility. Competition experiments, using oligonucleotides containing functional and nonfunctional consensus sites for binding of the carbon catabolite repressor Cre1, provided evidence that the complex from nonmycoparasitic mycelia involves the binding of Cre1 to both fragments of the ech-42 promoter. The presence of two and three consensus sites for binding of Cre1 in the two ech-42 promoter fragments used is consistent with these findings. In contrast, the formation of the protein–DNA complex from mycoparasitic mycelia is unaffected by the addition of the competing oligonucleotides and hence does not involve Cre1. Addition of equal amounts of protein of cell-free extracts from nonmycoparasitic mycelia converted the mycoparasitic DNA–protein complex into the nonmycoparasitic complex. The addition of the purified Cre1::glutathione S-transferase protein to mycoparasitic cell-free extracts produced the same effect. These findings suggest that ech-42 expression in T. harzianum is regulated by (i) binding of Cre1 to two single sites in the ech-42 promoter, (ii) binding of a “mycoparasitic” protein–protein complex to the ech-42 promoter in vicinity of the Cre1 binding sites, and (iii) functional inactivation of Cre1 upon mycoparasitic interaction to enable the formation of the mycoparasitic protein–DNA complex.
Resumo:
The ability to synthesize high molecular weight inulin was transferred to potato plants via constitutive expression of the 1-SST (sucrose:sucrose 1-fructosyltransferase) and the 1-FFT (fructan: fructan 1-fructosyltransferase) genes of globe artichoke (Cynara scolymus). The fructan pattern of tubers from transgenic potato plants represents the full spectrum of inulin molecules present in artichoke roots as shown by high-performance anion exchange chromatography, as well as size exclusion chromatography. These results demonstrate in planta that the enzymes sucrose:sucrose 1-fructosyltransferase and fructan:fructan 1-fructosyltransferase are sufficient to synthesize inulin molecules of all chain lengths naturally occurring in a given plant species. Inulin made up 5% of the dry weight of transgenic tubers, and a low level of fructan production also was observed in fully expanded leaves. Although inulin accumulation did not influence the sucrose concentration in leaves or tubers, a reduction in starch content occurred in transgenic tubers, indicating that inulin synthesis did not increase the storage capacity of the tubers.
Resumo:
19F nuclear Overhauser effects (NOEs) between fluorine labels on the cytoplasmic domain of rhodopsin solubilized in detergent micelles are reported. Previously, high-resolution solution 19F NMR spectra of fluorine-labeled rhodopsin in detergent micelles were described, demonstrating the applicability of this technique to studies of tertiary structure in the cytoplasmic domain. To quantitate tertiary contacts we have applied a transient one-dimensional difference NOE solution 19F NMR experiment to this system, permitting assessment of proximities between fluorine labels specifically incorporated into different regions of the cytoplasmic face. Three dicysteine substitution mutants (Cys-140–Cys-316, Cys-65–Cys-316, and Cys-139–Cys-251) were labeled by attachment of the trifluoroethylthio group through a disulfide linkage. Each mutant rhodopsin was prepared (8–10 mg) in dodecylmaltoside and analyzed at 20°C by solution 19F NMR. Distinct chemical shifts were observed for all of the rhodopsin 19F labels in the dark. An up-field shift of the Cys-316 resonance in the Cys-65–Cys-316 mutant suggests a close proximity between the two residues. When analyzed for 19F-19F NOEs, a moderate negative enhancement was observed for the Cys-65–Cys-316 pair and a strong negative enhancement was observed for the Cys-139–Cys-251 pair, indicating proximity between these sites. No NOE enhancement was observed for the Cys-140–Cys-316 pair. These NOE effects demonstrate a solution 19F NMR method for analysis of tertiary contacts in high molecular weight proteins, including membrane proteins.
Resumo:
Human apolipoprotein (apo) E4, a major risk factor for Alzheimer's disease (AD), occurs in amyloid plaques and neurofibrillary tangles (NFTs) in AD brains; however, its role in the pathogenesis of these lesions is unclear. Here we demonstrate that carboxyl-terminal-truncated forms of apoE, which occur in AD brains and cultured neurons, induce intracellular NFT-like inclusions in neurons. These cytosolic inclusions were composed of phosphorylated tau, phosphorylated neurofilaments of high molecular weight, and truncated apoE. Truncated apoE4, especially apoE4(Δ272–299), induced inclusions in up to 75% of transfected neuronal cells, but not in transfected nonneuronal cells. ApoE4 was more susceptible to truncation than apoE3 and resulted in much greater intracellular inclusion formation. These results suggest that apoE4 preferentially undergoes intracellular processing, creating a bioactive fragment that interacts with cytoskeletal components and induces NFT-like inclusions containing phosphorylated tau and phosphorylated neurofilaments of high molecular weight in neurons.
Resumo:
Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides.
Resumo:
The nuclear translocation of NF-kappa B follows the degradation of its inhibitor, I kappa B alpha, an event coupled with stimulation-dependent inhibitor phosphorylation. Prevention of the stimulation-dependent phosphorylation of I kappa B alpha, either by treating cells with various reagents or by mutagenesis of certain putative I kappa B alpha phosphorylation sites, abolishes the inducible degradation of I kappa B alpha. Yet, the mechanism coupling the stimulation-induced phosphorylation with the degradation has not been resolved. Recent reports suggest a role for the proteasome in I kappa B alpha degradation, but the mode of substrate recognition and the involvement of ubiquitin conjugation as a targeting signal have not been addressed. We show that of the two forms of I kappa B alpha recovered from stimulated cells in a complex with RelA and p50, only the newly phosphorylated form, pI kappa B alpha, is a substrate for an in vitro reconstituted ubiquitin-proteasome system. Proteolysis requires ATP, ubiquitin, a specific ubiquitin-conjugating enzyme, and other ubiquitin-proteasome components. In vivo, inducible I kappa B alpha degradation requires a functional ubiquitin-activating enzyme and is associated with the appearance of high molecular weight adducts of I kappa B alpha. Ubiquitin-mediated protein degradation may, therefore, constitute an integral step of a signal transduction process.
Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis.
Resumo:
Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicylic acid with 18O2 suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation or benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[35S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes.
Resumo:
Many of the molecules necessary for neurotransmission are homologous to proteins involved in the Golgi-to-plasma membrane stage of the yeast secretory pathway. Of 15 genes known to be essential for the later stages of vesicle trafficking in yeast, 7 have no identified mammalian homologs. These include the yeast SEC6, SEC8, and SEC15 genes, whose products are constituents of a 19.5S particle that interacts with the GTP-binding protein Sec4p. Here we report the sequences of rSec6 and rSec8, rat homologs of Sec6p and Sec8p. The rSec6 cDNA is predicted to encode an 87-kDa protein with 22% amino acid identity to Sec6p, and the rSec8 cDNA is predicted to encode a 110-kDa protein which is 20% identical to Sec8p. Northern blot analysis indicates that rSec6 and rSec8 are expressed in similar tissues. Immunodetection reveals that rSec8 is part of a soluble 17S particle in brain. COS cell cotransfection studies demonstrate that rSec8 colocalizes with the GTP-binding protein Rab3a and syntaxin 1a, two proteins involved in synaptic vesicle docking and fusion at the presynaptic terminal. These data suggest that rSec8 is a component of a high molecular weight complex which may participate in the regulation of vesicle docking and fusion in brain.
Resumo:
The phenobarbitone-responsive minimal promoter has been shown to lie between nt -179 and nt + 1 in the 5' (upstream) region of the CYP2B1/B2 gene in rat liver, on the basis of the drug responsiveness of the sequence linked to human growth hormone gene as reporter and targeted to liver as an asialoglycoprotein-DNA complex in vivo. Competition analyses of the nuclear protein-DNA complexes formed in gel shift assays with the positive (nt -69 to -98) and negative (nt -126 to -160) cis elements (PE and NE, respectively) identified within this region earlier indicate that the same protein may be binding to both the elements. The protein species purified on PE and NE affinity columns appear to be identical based on SDS/PAGE analysis, where it migrates as a protein of 26-28 kDa. Traces of a high molecular weight protein (94-100 kDa) are also seen in the preparation obtained after one round of affinity chromatography. The purified protein stimulates transcription of a minigene construct containing the 179 nt on the 5' side of the CYP2B1/B2 gene linked to the I exon in a cell-free system from liver nuclei. The purified protein can give rise to all the three complexes (I, II, and III) with the PE, just as the crude nuclear extract, under appropriate conditions. Manipulations in vitro indicate that the NE has a significantly higher affinity for the dephosphorylated form than for the phosphorylated form of the protein. The PE binds both forms. Phenobarbitone treatment of the animal leads to a significant increase in the phosphorylation of the 26- to 28-kDa and 94-kDa proteins in nuclear labeling experiments followed by isolation on a PE affinity column. We propose that the protein binding predominantly to the NE in the dephosphorylated state characterizes the basal level of transcription of the CYP2B1/B2 gene. Phenobarbitone treatment leads to phosphorylation of the protein, shifting the equilibrium toward binding to the PE. This can promote interaction with an upstream enhancer through other proteins such as the 94-kDa protein and leads to a significant activation of transcription.