41 resultados para hereditary spastic paraplegia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tetanus neurotoxin causes the spastic paralysis of tetanus by blocking neurotransmitter release at inhibitory synapses of the spinal cord. This is due to the penetration of the toxin inside the neuronal cytosol where it cleaves specifically VAMP/synaptobrevin, an essential component of the neuroexocytosis apparatus. Here we show that tetanus neurotoxin is internalized inside the lumen of small synaptic vesicles following the process of vesicle reuptake. Vesicle acidification is essential for the toxin translocation in the cytosol, which results in the proteolytic cleavage of VAMP/synaptobrevin and block of exocytosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by production of autoantibodies against intracellular antigens including DNA, ribosomal P, Ro (SS-A), La (SS-B), and the spliceosome. Etiology is suspected to involve genetic and environmental factors. Evidence of genetic involvement includes: associations with HLA-DR3, HLA-DR2, Fcγ receptors (FcγR) IIA and IIIA, and hereditary complement component deficiencies, as well as familial aggregation, monozygotic twin concordance >20%, λs > 10, purported linkage at 1q41–42, and inbred mouse strains that consistently develop lupus. We have completed a genome scan in 94 extended multiplex pedigrees by using model-based linkage analysis. Potential [log10 of the odds for linkage (lod) > 2.0] SLE loci have been identified at chromosomes 1q41, 1q23, and 11q14–23 in African-Americans; 14q11, 4p15, 11q25, 2q32, 19q13, 6q26–27, and 12p12–11 in European-Americans; and 1q23, 13q32, 20q13, and 1q31 in all pedigrees combined. An effect for the FcγRIIA candidate polymorphism) at 1q23 (lod = 3.37 in African-Americans) is syntenic with linkage in a murine model of lupus. Sib-pair and multipoint nonparametric analyses also support linkage (P < 0.05) at nine loci detected by using two-point lod score analysis (lod > 2.0). Our results are consistent with the presumed complexity of genetic susceptibility to SLE and illustrate racial origin is likely to influence the specific nature of these genetic effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer cell genomes contain alterations beyond known etiologic events, but their total number has been unknown at even the order of magnitude level. By sampling colorectal premalignant polyp and carcinoma cell genomes through use of the technique inter-(simple sequence repeat) PCR, we have found genomic alterations to be considerably more abundant than expected, with the mean number of genomic events per carcinoma cell totaling approximately 11,000. Colonic polyps early in the tumor progression pathway showed similar numbers of events. These results indicate that, as with certain hereditary cancer syndromes, genomic destabilization is an early step in sporadic tumor development. Together these results support the model of genomic instability being a cause rather than an effect of malignancy, facilitating vastly accelerated somatic cell evolution, with the observed orderly steps of the colon cancer progression pathway reflecting the consequences of natural selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rd7 mouse, an animal model for hereditary retinal degeneration, has some characteristics similar to human flecked retinal disorders. Here we report the identification of a deletion in a photoreceptor-specific nuclear receptor (mPNR) mRNA that is responsible for hereditary retinal dysplasia and degeneration in the rd7 mouse. mPNR was isolated from a pool of photoreceptor-specific cDNAs originally created by subtractive hybridization of mRNAs from normal and photoreceptorless rd mouse retinas. Localization of the gene corresponding to mPNR to mouse Chr 9 near the rd7 locus made it a candidate for the site of the rd7 mutation. Northern analysis of total RNA isolated from rd7 mouse retinas revealed no detectable signal after hybridization with the mPNR cDNA probe. However, with reverse transcription–PCR, we were able to amplify different fragments of mPNR from rd7 retinal RNA and to sequence them directly. We found a 380-nt deletion in the coding region of the rd7 mPNR message that creates a frame shift and produces a premature stop codon. This deletion accounts for more than 32% of the normal protein and eliminates a portion of the DNA-binding domain. In addition, it may result in the rapid degradation of the rd7 mPNR message by the nonsense-mediated decay pathway, preventing the synthesis of the corresponding protein. Our findings demonstrate that mPNR expression is critical for the normal development and function of the photoreceptor cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The congenital nemaline myopathies are rare hereditary muscle disorders characterized by the presence in the muscle fibers of nemaline bodies consisting of proteins derived from the Z disc and thin filament. In a single large Australian family with an autosomal dominant form of nemaline myopathy, the disease is caused by a mutation in the α-tropomyosin gene TPM3. The typical form of nemaline myopathy is inherited as an autosomal recessive trait, the locus of which we previously assigned to chromosome 2q21.2-q22. We show here that mutations in the nebulin gene located within this region are associated with the disease. The nebulin protein is a giant protein found in the thin filaments of striated muscle. A variety of nebulin isoforms are thought to contribute to the molecular diversity of Z discs. We have studied the 3′ end of the 20.8-kb cDNA encoding the Z disc part of the 800-kDa protein and describe six disease-associated mutations in patients from five families of different ethnic origins. In two families with consanguineous parents, the patients were homozygous for point mutations. In one family with nonconsanguineous parents, the affected siblings were compound heterozygotes for two different mutations, and in two further families with one detected mutation each, haplotypes are compatible with compound heterozygosity. Immunofluorescence studies with antibodies specific to the C-terminal region of nebulin indicate that the mutations may cause protein truncation possibly associated with loss of fiber-type diversity, which may be relevant to disease pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A remarkable instability at simple repeated sequences characterizes gastrointestinal cancer of the microsatellite mutator phenotype (MMP). Mutations in the DNA mismatch repair gene family underlie the MMP, a landmark for hereditary nonpolyposis colorectal cancer. These tumors define a distinctive pathway for carcinogenesis because they display a particular spectrum of mutated cancer genes containing target repeats for mismatch repair deficiency. One such gene is BAX, a proapoptotic member of the Bcl-2 family of proteins, which plays a key role in programmed cell death. More than half of colon and gastric cancers of the MMP contain BAX frameshifts in a (G)8 mononucleotide tract. However, the functional significance of these mutations in tumor progression has not been established. Here we show that inactivation of the wild-type BAX allele by de novo frameshift mutations confers a strong advantage during tumor clonal evolution. Tumor subclones with only mutant alleles frequently appeared after inoculation into nude mice of single-cell clones of colon tumor cell lines with normal alleles. In contrast, no clones of BAX-expressing cells were found after inoculation of homozygous cell clones without wild-type BAX. These results support the interpretation that BAX inactivation contributes to tumor progression by providing a survival advantage. In this context, survival analyses show that BAX mutations are indicators of poor prognosis for both colon and gastric cancer of the MMP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germline defects in the tuberous sclerosis 2 (TSC2) tumor suppressor gene predispose humans and rats to benign and malignant lesions in a variety of tissues. The brain is among the most profoundly affected organs in tuberous sclerosis (TSC) patients and is the site of development of the cortical tubers for which the hereditary syndrome is named. A spontaneous germline inactivation of the Tsc2 locus has been described in an animal model, the Eker rat. We report that the homozygous state of this mutation (Tsc2Ek/Ek) was lethal in mid-gestation (the equivalent of mouse E9.5–E13.5), when Tsc2 mRNA was highly expressed in embryonic neuroepithelium. During this period homozygous mutant Eker embryos lacking functional Tsc2 gene product, tuberin, displayed dysraphia and papillary overgrowth of the neuroepithelium, indicating that loss of tuberin disrupted the normal development of this tissue. Interestingly, there was significant intraspecies variability in the penetrance of cranial abnormalities in mutant embryos: the Long–Evans strain Tsc2Ek/Ek embryos displayed these defects whereas the Fisher 344 homozygous mutant embryos had normal-appearing neuroepithelium. Taken together, our data indicate that the Tsc2 gene participates in normal brain development and suggest the inactivation of this gene may have similar functional consequences in both mature and embryonic brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The candidate tumor suppressor gene, FHIT, encompasses the common human chromosomal fragile site at 3p14.2, the hereditary renal cancer translocation breakpoint, and cancer cell homozygous deletions. Fhit hydrolyzes dinucleotide 5′,5‴-P1,P3-triphosphate in vitro and mutation of a central histidine abolishes hydrolase activity. To study Fhit function, wild-type and mutant FHIT genes were transfected into cancer cell lines that lacked endogenous Fhit. No consistent effect of exogenous Fhit on growth in culture was observed, but Fhit and hydrolase “dead” Fhit mutant proteins suppressed tumorigenicity in nude mice, indicating that 5′,5‴-P1,P3-triphosphate hydrolysis is not required for tumor suppression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiomyopathy (CM) is a primary degenerative disease of myocardium and is traditionally categorized into hypertrophic and dilated CMs (HCM and DCM) according to its gross appearance. Cardiomyopathic hamster (CM hamster), a representative model of human hereditary CM, has HCM and DCM inbred sublines, both of which descend from the same ancestor. Herein we show that both HCM and DCM hamsters share a common defect in a gene for δ-sarcoglycan (δ-SG), the functional role of which is yet to be characterized. A breakpoint causing genomic deletion was found to be located at 6.1 kb 5′ upstream of the second exon of δ-SG gene, and its 5′ upstream region of more than 27.4 kb, including the authentic first exon of δ-SG gene, was deleted. This deletion included the major transcription initiation site, resulting in a deficiency of δ-SG transcripts with the consequent loss of δ-SG protein in all the CM hamsters, despite the fact that the protein coding region of δ-SG starting from the second exon was conserved in all the CM hamsters. We elucidated the molecular interaction of dystrophin-associated glycoproteins including δ-SG, by using an in vitro pull-down study and ligand overlay assay, which indicates the functional role of δ-SG in stabilizing sarcolemma. The present study not only identifies CM hamster as a valuable animal model for studying the function of δ-SG in vivo but also provides a genetic target for diagnosis and treatment of human CM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein we report the clinical, histopathological, and molecular features of a cancer syndrome with predisposition to uterine leiomyomas and papillary renal cell carcinoma. The studied kindred included 11 family members with uterine leiomyomas and two with uterine leiomyosarcoma. Seven individuals had a history of cutaneous nodules, two of which were confirmed to be cutaneous leiomyomatosis. The four kidney cancer cases occurred in young (33- to 48-year-old) females and displayed a unique natural history. All these kidney cancers displayed a distinct papillary histology and presented as unilateral solitary lesions that had metastasized at the time of diagnosis. Genetic-marker analysis mapped the predisposition gene to chromosome 1q. Losses of the normal chromosome 1q were observed in tumors that had occurred in the kindred, including a uterine leiomyoma. Moreover, the observed histological features were used as a tool to diagnose a second kindred displaying the phenotype. We have shown that predisposition to uterine leiomyomas and papillary renal cell cancer can be inherited dominantly through the hereditary leiomyomatosis and renal cell cancer (HLRCC) gene. The HLRCC gene maps to chromosome 1q and is likely to be a tumor suppressor. Clinical, histopathological, and molecular tools are now available for accurate detection and diagnosis of this cancer syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is a common chronic human genetic disorder whose hallmark is systemic iron overload. Homozygosity for a mutation in the MHC class I heavy chain paralogue gene HFE has been found to be a primary cause of HH. However, many individuals homozygous for the defective allele of HFE do not develop iron overload, raising the possibility that genetic variation in modifier loci contributes to the HH phenotype. Mice deficient in the product of the β2-microglobulin (β2M) class I light chain fail to express HFE and other MHC class I family proteins, and they have been found to manifest many characteristics of the HH phenotype. To determine whether natural genetic variation plays a role in controlling iron overload, we performed classical genetic analysis of the iron-loading phenotype in β2M-deficient mice in the context of different genetic backgrounds. Strain background was found to be a major determinant in iron loading. Sex played a role that was less than that of strain background but still significant. Resistance and susceptibility to iron overload segregated as complex genetic traits in F1 and back-cross progeny. These results suggest the existence of naturally variant autosomal and Y chromosome-linked modifier loci that, in the context of mice genetically predisposed by virtue of a β2M deficiency, can profoundly influence the severity of iron loading. These results thus provide a genetic explanation for some of the variability of the HH phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent criticism that the biological species concept (BSC) unduly neglects phylogeny is examined under a novel modification of coalescent theory that considers multiple, sex-defined genealogical pathways through sexual organismal pedigrees. A competing phylogenetic species concept (PSC) also is evaluated from this vantage. Two analytical approaches are employed to capture the composite phylogenetic information contained within the braided assemblages of hereditary pathways of a pedigree: (i) consensus phylogenetic trees across allelic transmission routes and (ii) composite phenograms from quantitative values of organismal coancestry. Outcomes from both approaches demonstrate that the supposed sharp distinction between biological and phylogenetic species concepts is illusory. Historical descent and reproductive ties are related aspects of phylogeny and jointly illuminate biotic discontinuity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of hereditary nonpolyposis colon cancer (HNPCC) families harboring heterozygous germline mutations in the DNA mismatch repair genes hMSH2 or hMLH1 present with tumors generally two to three decades earlier than individuals with nonfamilial sporadic colon cancer. We searched for phenotypic features that might predispose heterozygous cells from HNPCC kindreds to malignant transformation. hMSH2+/− lymphoblastoid cell lines were found to be on average about 4-fold more tolerant than wild-type cells to killing by the methylating agent temozolomide, a phenotype that is invariably linked with impairment of the mismatch repair system. This finding was associated with an average 2-fold decrease of the steady-state level of hMSH2 protein in hMSH2+/− cell lines. In contrast, hMLH1+/− heterozygous cells were indistinguishable from normal controls in these assays. Thus, despite the fact that HNPCC families harboring mutations in hMSH2 or hMLH1 cannot be distinguished clinically, the early stages of the carcinogenic process in hMSH2 and hMLH1 mutation carriers may be different. Should hMSH2+/− colonocytes and lymphoblasts harbor a similar phenotype, the increased tolerance of the former to DNA-damaging agents present in the human colon may play a key role in the initiation of the carcinogenic process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tumor suppressors EXT1 and EXT2 are associated with hereditary multiple exostoses and encode bifunctional glycosyltransferases essential for chain polymerization of heparan sulfate (HS) and its analog, heparin (Hep). Three highly homologous EXT-like genes, EXTL1–EXTL3, have been cloned, and EXTL2 is an α1,4-GlcNAc transferase I, the key enzyme that initiates the HS/Hep synthesis. In the present study, truncated forms of EXTL1 and EXTL3, lacking the putative NH2-terminal transmembrane and cytoplasmic domains, were transiently expressed in COS-1 cells and found to harbor α-GlcNAc transferase activity. EXTL3 used not only N-acetylheparosan oligosaccharides that represent growing HS chains but also GlcAβ1–3Galβ1-O-C2H4NH-benzyloxycarbonyl (Cbz), a synthetic substrate for α-GlcNAc transferase I that determines and initiates HS/Hep synthesis. In contrast, EXTL1 used only the former acceptor. Neither EXTL1 nor EXTL3 showed any glucuronyltransferase activity as examined with N-acetylheparosan oligosaccharides. Heparitinase I digestion of each transferase-reaction product showed that GlcNAc had been transferred exclusively through an α1,4-configuration. Hence, EXTL3 most likely is involved in both chain initiation and elongation, whereas EXTL1 possibly is involved only in the chain elongation of HS and, maybe, Hep as well. Thus, their acceptor specificities of the five family members are overlapping but distinct from each other, except for EXT1 and EXT2 with the same specificity. It now has been clarified that all of the five cloned human EXT gene family proteins harbor glycosyltransferase activities, which probably contribute to the synthesis of HS and Hep.