25 resultados para grating targets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic nucleotide-gated (CNG) channels are Ca(2+)-permeable, nonspecific cation channels that can be activated through direct interaction with cAMP and/or cGMP. Recent electrophysiological evidence for these channels in cultured hippocampal neurons prompted us to investigate the expression of CNG channel genes in hippocampus. PCR amplification detected the expression of transcripts for subunit 1 of both the rod photoreceptor (RCNGC1) and the olfactory receptor cell (OCNGC1) subtype of CNG channel in adult rat hippocampus. In situ hybridization detected expression of both channel subtypes in most principal neurons, including pyramidal cells of the CA1 through CA3 regions and granule cells of the dentate gyrus. From the hybridization patterns, we conclude that the two genes are colocalized in individual neurons. Comparison of the patterns of expression of type 1 cGMP-dependent protein kinase and the CNG channels suggests that hippocampal neurons can respond to changes in cGMP levels with both rapid changes in CNG channel activity and slower changes induced by phosphorylation. Future models of hippocampal function should include CNG channels and their effects on both electrical responses and intracellular Ca2+ levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ca2+ and its ubiquitous intracellular receptor calmodulin (CaM) are required in the nervous system, among a host of cellular responses, for the modulation of several important enzymes and ion channels involved in synaptic efficacy and neuronal plasticity. Here, we report that CaM can be replaced by the neuronal calcium sensor NCS-1 both in vitro and in vivo. NCS-1 is a calcium binding protein with two Ca(2+)-binding domains that shares only 21% of homology with CaM. We observe that NCS-1 directly activates two Ca2+/CaM-dependent enzymes (3':5'-cyclic nucleotide phosphodiesterase and protein phosphatase calcineurin). Co-activation of nitric oxide synthase by NCS-1 and CaM results in a higher activity than with CaM alone. Moreover, NCS-1 is coexpressed with calcineurin and nitric oxide synthase in several neuron populations. Finally, injections of NCS-1 into calmodulin-defective cam1 Paramecium partially restore wildtype behavioral responses. With this highly purified preparation of NCS-1, we have obtained crystals suitable for crystallographic structure studies. NCS-1, despite its very different structure, distribution, and Ca(2+)-binding affinity as compared with CaM, can substitute for or potentiate CaM functions. Therefore, NCS-1 represents a novel protein capable of mediating multiple Ca(2+)-signaling pathways in the nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat shock (HS) proteins (HSPs) induce protection against a number of stresses distinct from HS, including reactive oxygen species. In the human premonocytic line U937, we investigated in whole cells the effects of preexposure to HS and exposure to hydrogen peroxide (H2O2) on mitochondrial membrane potential, mass, and ultrastructure. HS prevented H2O2-induced alterations in mitochondrial membrane potential and cristae formation while increasing expression of HSPs and the protein product of bcl-2. Protection correlated best with the expression of the 70-kDa HSP, hsp70. We propose that mitochondria represent a selective target for HS-mediated protection against oxidative injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypermutation can be defined as an enhancement of the spontaneous mutation rate which the organism uses in certain types of differentiated cells where a high mutation rate is advantageous. At the immunoglobulin loci this process increases the mutation rate > 10(5)-fold over the normal, spontaneous rate. Its proximate cause is called the immunoglobulin mutator system. The most important function of this system is to improve antibody affinity in an ongoing response; it is turned on and off during the differentiation of B lymphocytes. We have established an in vitro system to study hypermutation by transfecting a rearranged mu gene into a cell line in which an immunoglobulin mutator has been demonstrated. A construct containing the mu gene and the 3' kappa enhancer has all the cis-acting elements necessary for hypermutation of the endogenous gene segments encoding the variable region. The activity of the mutator does not seem to depend strongly on the position of the transfected gene in the genome. The mutator is not active in transformed cells of a later differentiation stage. It is also not active on a transfected lacZ gene. These results are consistent with the specificity of the mutator system being maintained and make it possible to delineate cis and trans mutator elements in vitro. Surprisingly, the mutator preferentially targets G-C base pairs. Two hypotheses are discussed: (i) the immunoglobulin mutator system in mammals consists of several mutators, of which the mutator described here is only one; or (ii) the primary specificity of the system is biased toward mutation of G-C base pairs, but this specificity is obscured by antigenic selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infantile Pompe disease is a fatal genetic muscle disorder caused by a deficiency of acid alpha-glucosidase, a glycogen-degrading lysosomal enzyme. We constructed a plasmid containing a 5'-shortened human acid alpha-glucosidase cDNA driven by the cytomegalovirus promoter, as well as the aminoglycoside phosphotransferase and dihydrofolate reductase genes. Following transfection in dihydrofolate reductase-deficient Chinese hamster ovary cells, selection with Geneticin, and amplification with methotrexate, a cell line producing high levels of the alpha-glucosidase was established. In 48 hr, the cells cultured in Iscove's medium with 5 mM butyrate secreted 110-kDa precursor enzyme that accumulated to 91 micrograms.ml-1 in the medium (activity, > 22.6 mumol.hr-1.ml-1). This enzyme has a pH optimum similar to that of the mature form, but a lower Vmax and Km for 4-methylumbelliferyl-alpha-D-glucoside. It is efficiently taken up by fibroblasts from Pompe patients, restoring normal levels of acid alpha-glucosidase and glycogen. The uptake is blocked by mannose 6-phosphate. Following intravenous injection, high enzyme levels are seen in heart and liver. An efficient production system now exists for recombinant human acid alpha-glucosidase targeted to heart and capable of correcting fibroblasts from patients with Pompe disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integration of human immunodeficiency virus type 1 cDNA into a target DNA can be strongly influenced by the conformation of the target. For example, integration in vitro is sometimes favored in target DNAs containing sequence-directed bends or DNA distortions caused by bound proteins. We have analyzed the effect of DNA bending by studying integration into two well-characterized protein-DNA complexes: Escherichia coli integration host factor (IHF) protein bound to a phage IHF site, and the DNA binding domain of human lymphoid enhancer factor (LEF) bound to a LEF site. Both of these proteins have previously been reported to bend DNA by approximately 140 degrees. Binding of IHF greatly increases the efficiency of in vitro integration at hotspots within the IHF site. We analyzed a series of mutants in which the IHF site was modified at the most prominent hotspot. We found that each variant still displayed enhanced integration upon IHF binding. Evidently the local sequence is not critical for formation of an IHF hotspot. LEF binding did not create preferred sites for integration. The different effects of IHF and LEF binding can be rationalized in terms of the different proposed conformations of the two protein-DNA complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A DNA-binding factor with high affinity and specificity for the [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes has been characterized. The factor has the highest affinity for the [Leu5]-enkephalin-encoding sequence in the dynorphin B-encoding region of the prodynorphin gene, has relatively high affinity for other [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes, but has no apparent affinity for similar DNA sequences coding for [Met5]-enkephalin in the prodynorphin or proopiomelanocortin genes. The factor has been named [Leu5]enkephalin-encoding sequence DNA-binding factor (LEF). LEF has a nuclear localization and is composed of three subunits of about 60, 70, and 95 kDa, respectively. The highest levels were observed in rat testis, cerebellum, and spleen and were generally higher in late embryonal compared to newborn or adult animals. LEF activity was also recorded in human clonal tumor cell lines. LEF inhibited the transcription of reporter genes in artificial gene constructs where a [Leu5]enkephalin-encoding DNA fragment had been inserted between the transcription initiation site and the coding region of the reporter genes. These observations suggest that the [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes also have regulatory functions realized through interaction with a specific DNA-binding factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The X gene product encoded by the hepatitis B virus, termed pX, is a promiscuous transactivator of a variety of viral and cellular genes under the control of diverse cis-acting elements. Although pX does not appear to directly bind DNA, pX-responsive elements include the NF-kappa B, AP-1, and CRE (cAMP response element) sites. Direct protein-protein interactions occur between viral pX and the CRE-binding transcription factors CREB and ATF. Here we examine the mechanism of the protein-protein interactions occurring between CREB and pX by using recombinant proteins and in vitro DNA-binding assays. We demonstrate that pX interacts with the basic region-leucine zipper domain of CREB but not with the DNA-binding domain of the yeast transactivator protein Gal4. The interaction between CREB and pX increases the affinity of CREB for the CRE site by an order of magnitude, although pX does not alter the rate of CREB dimerization. Methylation interference footprinting reveals differences between the CREB DNA and CREB-pX DNA complexes. These experiments demonstrate that pX titers the way CREB interacts with the CRE DNA and suggest that the basic, DNA-binding region of CREB is the target of pX. Transfection assays in PC12 cells with the CREB-dependent somatostatin promoter demonstrate a nearly 15-fold transcriptional induction after forskolin stimulation in the presence of pX. These results support the significance of the CREB-pX protein-protein interactions in vivo.