66 resultados para glutamate decarboxylase
Resumo:
Neurotoxicity induced by overstimulation of N-methyl-d-aspartate (NMDA) receptors is due, in part, to a sustained rise in intracellular Ca2+; however, little is known about the ensuing intracellular events that ultimately result in cell death. Here we show that overstimulation of NMDA receptors by relatively low concentrations of glutamate induces apoptosis of cultured cerebellar granule neurons (CGNs) and that CGNs do not require new RNA or protein synthesis. Glutamate-induced apoptosis of CGNs is, however, associated with a concentration- and time-dependent activation of the interleukin 1β-converting enzyme (ICE)/CED-3-related protease, CPP32/Yama/apopain (now designated caspase 3). Further, the time course of caspase 3 activation after glutamate exposure of CGNs parallels the development of apoptosis. Moreover, glutamate-induced apoptosis of CGNs is almost completely blocked by the selective cell permeable tetrapeptide inhibitor of caspase 3, Ac-DEVD-CHO but not by the ICE (caspase 1) inhibitor, Ac-YVAD-CHO. Western blots of cytosolic extracts from glutamate-exposed CGNs reveal both cleavage of the caspase 3 substrate, poly(ADP-ribose) polymerase, as well as proteolytic processing of pro-caspase 3 to active subunits. Our data demonstrate that glutamate-induced apoptosis of CGNs is mediated by a posttranslational activation of the ICE/CED-3-related cysteine protease caspase 3.
Resumo:
Although d amino acids are prominent in bacteria, they generally are thought not to occur in mammals. Recently, high levels of d-serine have been found in mammalian brain where it activates glutamate/N-methyl-d-aspartate receptors by interacting with the “glycine site” of the receptor. Because amino acid racemases are thought to be restricted to bacteria and insects, the origin of d-serine in mammals has been puzzling. We now report cloning and expression of serine racemase, an enzyme catalyzing the formation of d-serine from l-serine. Serine racemase is a protein representing an additional family of pyridoxal-5′ phosphate-dependent enzymes in eukaryotes. The enzyme is enriched in rat brain where it occurs in glial cells that possess high levels of d-serine in vivo. Occurrence of serine racemase in the brain demonstrates the conservation of d-amino acid metabolism in mammals with implications for the regulation of N-methyl-d-aspartate neurotransmission through glia-neuronal interactions.
Resumo:
Growth of a glutamate transport-deficient mutant of Rhodobacter sphaeroides on glutamate as sole carbon and nitrogen source can be restored by the addition of millimolar amounts of Na+. Uptake of glutamate (Kt of 0.2 μM) by the mutant strictly requires Na+ (Km of 25 mM) and is inhibited by ionophores that collapse the proton motive force (pmf). The activity is osmotic-shock-sensitive and can be restored in spheroplasts by the addition of osmotic shock fluid. Transport of glutamate is also observed in membrane vesicles when Na+, a proton motive force, and purified glutamate binding protein are present. Both transport and binding is highly specific for glutamate. The Na+-dependent glutamate transporter of Rb. sphaeroides is an example of a secondary transport system that requires a periplasmic binding protein and may define a new family of bacterial transport proteins.
Resumo:
Several scaffold proteins for neurotransmitter receptors have been identified as candidates for receptor targeting. However, the molecular mechanism underlying such receptor clustering and targeting to postsynaptic specializations remains unknown. PSD-Zip45 (also named Homer 1c/vesl-1L) consists of the NH2 terminus containing the enabled/VASP homology 1 domain and the COOH terminus containing the leucine zipper. Here, we demonstrate immunohistochemically that metabotropic glutamate receptor 1α (mGluR1α) and PSD-Zip45/Homer 1c are colocalized to synapses in the cerebellar molecular layer but not in the hippocampus. In cultured hippocampal neurons, PSD-Zip45/Homer1c and N-methyl-d-aspartate receptors are preferentially colocalized to dendritic spines. Cotransfection of mGluR1α or mGluR5 and PSD-Zip45/Homer 1c into COS-7 cells results in mGluR clustering induced by PSD-Zip45/Homer 1c. An in vitro multimerization assay shows that the extreme COOH-terminal leucine zipper is involved in self-multimerization of PSD-Zip45/Homer 1c. A clustering assay of mGluRs in COS-7 cells also reveals a critical role of this leucine-zipper motif of PSD-Zip45/Homer 1c in mGluR clustering. These results suggest that the leucine zipper of subsynaptic scaffold protein is a candidate motif involved in neurotransmitter receptor clustering at the central synapse.
Resumo:
Little is known about the mechanisms that regulate the number of ionotropic glutamate receptors present at excitatory synapses. Herein, we show that GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) are removed from the postsynaptic plasma membrane of cultured hippocampal neurons by rapid, ligand-induced endocytosis. Although endocytosis of AMPARs can be induced by high concentrations of AMPA without concomitant activation of N-methyl-d-aspartate (NMDA) receptors (NMDARs), NMDAR activation is required for detectable endocytosis induced by synaptically released glutamate. Activated AMPARs colocalize with AP2, a marker of endocytic coated pits, and endocytosis of AMPARs is blocked by biochemical inhibition of clathrin-coated pit function or overexpression of a dominant-negative mutant form of dynamin. These results establish that ionotropic receptors are regulated by dynamin-dependent endocytosis and suggest an important role of endocytic membrane trafficking in the postsynaptic modulation of neurotransmission.
Resumo:
In the mammalian retina, extensive processing of spatiotemporal and chromatic information occurs. One key principle in signal transfer through the retina is parallel processing. Two of these parallel pathways are the ON- and OFF-channels transmitting light and dark signals. This dual system is created in the outer plexiform layer, the first relay station in retinal signal transfer. Photoreceptors release glutamate onto ON- and OFF-type bipolar cells, which are functionally distinguished by their postsynaptic expression of different types of glutamate receptors, namely ionotropic and metabotropic glutamate receptors. In the current concept, rod photoreceptors connect only to rod bipolar cells (ON-type) and cone photoreceptors connect only to cone bipolar cells (ON- and OFF-type). We have studied the distribution of (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunits at the synapses in the outer plexiform layer of the rodent retina by immunoelectron microscopy and serial section reconstruction. We report a non-classical synaptic contact and an alternative pathway for rod signals in the retina. Rod photoreceptors made synaptic contact with putative OFF-cone bipolar cells that expressed the AMPA glutamate receptor subunits GluR1 and GluR2 on their dendrites. Thus, in the retina of mouse and rat, an alternative pathway for rod signals exists, where rod photoreceptors bypass the rod bipolar cell and directly excite OFF-cone bipolar cells through an ionotropic sign-conserving AMPA glutamate receptor.
Resumo:
Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft. The proteins belong to a large family of secondary transporters, which includes bacterial glutamate transporters. The C-terminal half of the glutamate transporters is well conserved and thought to contain the translocation path and the binding sites for substrate and coupling ions. A serine-rich sequence motif in this part of the proteins is located in a putative intracellular loop. Cysteine-scanning mutagenesis was applied to this loop in the glutamate transporter GltT of Bacillus stearothermophilus. The loop was found to be largely intracellular, but three consecutive positions in the conserved serine-rich motif (S269, S270, and E271) are accessible from both sides of the membrane. Single-cysteine mutants in the serine-rich motif were still capable of glutamate transport, but modification with N-ethylmaleimide blocked the transport activity in six mutants (T267C, A268C, S269C, S270C, E271C, and T272C). Two milimolars l-glutamate effectively protected against the modification of the cysteines at position 269–271 from the periplasmic side of the membrane but was unable to protect cysteine modification from the cytoplasmic side of the membrane. The results indicate that the conserved serine-rich motif in the glutamate transporter forms a reentrant loop, a structure that is found in several ion channels but is unusual for transporter proteins. The reentrant loop is of crucial importance for the function of the glutamate transporter.
Resumo:
Neuropeptide Y (NPY) and the endogenous melanocortin receptor antagonist, agouti gene-related protein (AGRP), coexist in the arcuate nucleus, and both exert orexigenic effects. The present study aimed primarily at determining the brain distribution of AGRP. AGRP mRNA-expressing cells were limited to the arcuate nucleus, representing a major subpopulation (95%) of the NPY neurons, which also was confirmed with immunohistochemistry. AGRP-immunoreactive (-ir) terminals all contained NPY and were observed in many brain regions extending from the rostral telencephalon to the pons, including the parabrachial nucleus. NPY-positive, AGRP-negative terminals were observed in many areas. AGRP-ir terminals were reduced dramatically in all brain regions of mice treated neonatally with monosodium glutamate as well as of mice homozygous for the anorexia mutation. Terminals immunoreactive for the melanocortin peptide α-melanocyte-stimulating hormone formed a population separate from, but parallel to, the AGRP-ir terminals. Our results show that arcuate NPY neurons, identified by the presence of AGRP, project more extensively in the brain than previously known and indicate that the feeding regulatory actions of NPY may extend beyond the hypothalamus.
Resumo:
Maintenance of lasting synaptic efficacy changes requires protein synthesis. We report here a mechanism that might influence translation control at the level of the single synapse. Stimulation of metabotropic glutamate receptors in hippocampal slices induces a rapid protein kinase C-dependent translocation of multifunction kinase p90rsk to polyribosomes; concomitantly, there is enhanced phosphorylation of at least six polyribosome binding proteins. Among the polyribosome bound proteins are the p90rsk-activating kinase ERK-2 and a known p90rsk substrate, glycogen synthase kinase 3β, which regulates translation efficiency via eukaryotic initiation factor 2B. Thus metabotropic glutamate receptor stimulation could induce synaptic activity-dependent translation via translocation of p90rsk to ribosomes.
Resumo:
The three-dimensional structure of glutamate-1-semialdehyde aminomutase (EC 5.4.3.8), an α2-dimeric enzyme from Synechococcus, has been determined by x-ray crystallography using heavy atom derivative phasing. The structure, refined at 2.4-Å resolution to an R-factor of 18.7% and good stereochemistry, explains many of the enzyme’s unusual specificity and functional properties. The overall fold is that of aspartate aminotransferase and related B6 enzymes, but it also has specific features. The structure of the complex with gabaculine, a substrate analogue, shows unexpectedly that the substrate binding site involves residues from the N-terminal domain of the molecule, notably Arg-32. Glu-406 is suitably positioned to repel α-carboxylic acids, thereby suggesting a basis for the enzyme’s reaction specificity. The subunits show asymmetry in cofactor binding and in the mobilities of the residues 153–181. In the unliganded enzyme, one subunit has the cofactor bound as an aldimine of pyridoxal phosphate with Lys-273 and, in this subunit, residues 153–181 are disordered. In the other subunit in which the cofactor is not covalently bound, residues 153–181 are well defined. Consistent with the crystallographically demonstrated asymmetry, a form of the enzyme in which both subunits have pyridoxal phosphate bound to Lys-273 through a Schiff base showed biphasic reduction by borohydride in solution. Analysis of absorption spectra during reduction provided evidence of communication between the subunits. The crystal structure of the reduced form of the enzyme shows that, despite identical cofactor binding in each monomer, the structural asymmetry at residues 153–181 remains.
Resumo:
All but two genes involved in the ergosterol biosynthetic pathway in Saccharomyces cerevisiae have been cloned, and their corresponding mutants have been described. The remaining genes encode the C-3 sterol dehydrogenase (C-4 decarboxylase) and the 3-keto sterol reductase and in concert with the C-4 sterol methyloxidase (ERG25) catalyze the sequential removal of the two methyl groups at the sterol C-4 position. The protein sequence of the Nocardia sp NAD(P)-dependent cholesterol dehydrogenase responsible for the conversion of cholesterol to its 3-keto derivative shows 30% similarity to a 329-aa Saccharomyces ORF, YGL001c, suggesting a possible role of YGL001c in sterol decarboxylation. The disruption of the YGL001c ORF was made in a diploid strain, and the segregants were plated onto sterol supplemented media under anaerobic growth conditions. Segregants containing the YGL001c disruption were not viable after transfer to fresh, sterol-supplemented media. However, one segregant was able to grow, and genetic analysis indicated that it contained a hem3 mutation. The YGL001c (ERG26) disruption also was viable in a hem 1Δ strain grown in the presence of ergosterol. Introduction of the erg26 mutation into an erg1 (squalene epoxidase) strain also was viable in ergosterol-supplemented media. We demonstrated that erg26 mutants grown on various sterol and heme-supplemented media accumulate nonesterified carboxylic acid sterols such as 4β,14α-dimethyl-4α-carboxy-cholesta-8,24-dien-3β-ol and 4β-methyl-4α-carboxy-cholesta-8,24-dien-3β-ol, the predicted substrates for the C-3 sterol dehydrogenase. Accumulation of these sterol molecules in a heme-competent erg26 strain results in an accumulation of toxic-oxygenated sterol intermediates that prevent growth, even in the presence of exogenously added sterol.
Resumo:
Glutamate transporters in the central nervous system are expressed in both neurons and glia, they mediate high affinity, electrogenic uptake of glutamate, and they are associated with an anion conductance that is stoichiometrically uncoupled from glutamate flux. Although a complete cycle of transport may require 50–100 ms, previous studies suggest that transporters can alter synaptic currents on a much faster time scale. We find that application of l-glutamate to outside-out patches from cerebellar Bergmann glia activates anion-potentiated glutamate transporter currents that activate in <1 ms, suggesting an efficient mechanism for the capture of extrasynaptic glutamate. Stimulation in the granule cell layer in cerebellar slices elicits all or none α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor and glutamate transporter currents in Bergmann glia that have a rapid onset, suggesting that glutamate released from climbing fiber terminals escapes synaptic clefts and reaches glial membranes shortly after release. Comparison of the concentration dependence of both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor and glutamate transporter kinetics in patches with the time course of climbing fiber-evoked responses indicates that the glutamate transient at Bergmann glial membranes reaches a lower concentration than attained in the synaptic cleft and remains elevated in the extrasynaptic space for many milliseconds.
Resumo:
Ornithine decarboxylase (ODC), the first enzyme in polyamine biosynthesis, is highly regulated by many trophic stimuli, and changes in its levels and organization correlate with cytoskeletal changes in normal human epidermal keratinocytes (NHEK). NHEK ODC exhibits a filamentous perinuclear/nuclear localization that becomes more diffuse under conditions that alter actin architecture. We have thus asked whether ODC colocalizes with a component of the NHEK cytoskeleton. Confocal immunofluorescence showed that ODC distribution in NHEK was primarily perinuclear; upon disruption of the actin cytoskeleton with cytochalasin D, ODC distribution was diffuse. The ODC distribution in untreated NHEK overlapped with that of keratin in the perinuclear but not cytoplasmic area; after treatment with cytochalasin D, overlap between staining for ODC and for keratin was extensive. No significant overlap with actin and minimal overlap with tubulin filament systems were observed. Subcellular fractionation by sequential homogenizations and centrifugations of NHEK lysates or detergent and salt extractions of NHEK in situ revealed that ODC protein and activity were detectable in both soluble and insoluble fractions, with mechanical disruption causing additional solubilization of ODC activity (three- to sevenfold above controls). Fractionation and ODC immunoprecipitation from [32P]orthophosphate-labeled NHEK lysates showed that a phosphorylated form of ODC was present in the insoluble fractions. Taken together, these data suggest that two pools of ODC exist in NHEK. The first is the previously described soluble pool, and the second is enriched in phospho-ODC and associated with insoluble cellular material that by immunohistochemistry appears to be organized in conjunction with the keratin cytoskeleton.
Resumo:
The extracellular glutamate concentration ([glu]o) rises during cerebral ischemia, reaching levels capable of inducing delayed neuronal death. The mechanisms underlying this glutamate accumulation remain controversial. We used N-methyl-d-aspartate receptors on CA3 pyramidal neurons as a real-time, on-site, glutamate sensor to identify the source of glutamate release in an in vitro model of ischemia. Using glutamate and l-trans-pyrrolidine-2,4-dicarboxylic acid (tPDC) as substrates and dl-threo-β-benzyloxyaspartate (TBOA) as an inhibitor of glutamate transporters, we demonstrate that energy deprivation decreases net glutamate uptake within 2–3 min and later promotes reverse glutamate transport. This process accounts for up to 50% of the glutamate accumulation during energy deprivation. Enhanced action potential-independent vesicular release also contributes to the increase in [glu]o, by ≈50%, but only once glutamate uptake is inhibited. These results indicate that a significant rise in [glu]o already occurs during the first minutes of energy deprivation and is the consequence of reduced uptake and increased vesicular and nonvesicular release of glutamate.
Resumo:
New antibiotics to combat the emerging pandemic of drug-resistant strains of Mycobacterium tuberculosis are urgently needed. We have investigated the effects on M. tuberculosis of phosphorothioate-modified antisense oligodeoxyribonucleotides (PS-ODNs) against the mRNA of glutamine synthetase, an enzyme whose export is associated with pathogenicity and with the formation of a poly-l-glutamate/glutamine cell wall structure. Treatment of virulent M. tuberculosis with 10 μM antisense PS-ODNs reduced glutamine synthetase activity and expression by 25–50% depending on whether one, two, or three different PS-ODNs were used and the PS-ODNs' specific target sites on the mRNA. Treatment with PS-ODNs of a recombinant strain of Mycobacterium smegmatis expressing M. tuberculosis glutamine synthetase selectively inhibited the recombinant enzyme but not the endogenous enzyme for which the mRNA transcript was mismatched by 2–4 nt. Treatment of M. tuberculosis with the antisense PS-ODNs also reduced the amount of poly-l-glutamate/glutamine in the cell wall by 24%. Finally, treatment with antisense PS-ODNs reduced M. tuberculosis growth by 0.7 logs (1 PS-ODN) to 1.25 logs (3 PS-ODNs) but had no effect on the growth of M. smegmatis, which does not export glutamine synthetase nor possess the poly-l-glutamate/glutamine (P-l-glx) cell wall structure. The experiments indicate that the antisense PS-ODNs enter the cytoplasm of M. tuberculosis and bind to their cognate targets. Although more potent ODN technology is needed, this study demonstrates the feasibility of using antisense ODNs in the antibiotic armamentarium against M. tuberculosis.