62 resultados para genomic
Resumo:
Nitric oxide (NO) and carbon monoxide (CO) seem to be neurotransmitters in the brain. The colocalization of their respective biosynthetic enzymes, neuronal NO synthase (nNOS) and heme oxygenase-2 (HO2), in enteric neurons and altered intestinal function in mice with genomic deletion of the enzymes (nNOSΔ/Δ and HO2Δ/Δ) suggest neurotransmitter roles for NO and CO in the enteric nervous system. We now establish that NO and CO are both neurotransmitters that interact as cotransmitters. Small intestinal smooth muscle cells from nNOSΔ/Δ and HO2Δ/Δ mice are depolarized, with apparent additive effects in the double knockouts (HO2Δ/Δ/nNOSΔ/Δ). Muscle relaxation and inhibitory neurotransmission are reduced in the mutant mice. In HO2Δ/Δ preparations, responses to electrical field stimulation are nearly abolished despite persistent nNOS expression, whereas exogenous CO restores normal responses, indicating that the NO system does not function in the absence of CO generation.
Resumo:
An approach was developed for the quantification of subtle gains and losses of genomic DNA. The approach relies on a process called molecular combing. Molecular combing consists of the extension and alignment of purified molecules of genomic DNA on a glass coverslip. It has the advantage that a large number of genomes can be combed per coverslip, which allows for a statistically adequate number of measurements to be made on the combed DNA. Consequently, a high-resolution approach to mapping and quantifying genomic alterations is possible. The approach consists of applying fluorescence hybridization to the combed DNA by using probes to identify the amplified region. Measurements then are made on the linear hybridization signals to ascertain the region's exact size. The reliability of the approach first was tested for low copy number amplifications by determining the copy number of chromosome 21 in a normal and trisomy 21 cell line. It then was tested for high copy number amplifications by quantifying the copy number of an oncogene amplified in the tumor cell line GTL-16. These results demonstrate that a wide range of amplifications can be accurately and reliably quantified. The sensitivity and resolution of the approach likewise was assessed by determining the copy number of a single allele (160 kb) alteration.
Resumo:
To accelerate gene isolation from plants by positional cloning, vector systems suitable for both chromosome walking and genetic complementation are highly desirable. Therefore, we developed a transformation-competent artificial chromosome (TAC) vector, pYLTAC7, that can accept and maintain large genomic DNA fragments stably in both Escherichia coli and Agrobacterium tumefaciens. Furthermore, it has the cis sequences required for Agrobacterium-mediated gene transfer into plants. We cloned large genomic DNA fragments of Arabidopsis thaliana into the vector and showed that most of the DNA fragments were maintained stably. Several TAC clones carrying 40- to 80-kb genomic DNA fragments were transferred back into Arabidopsis with high efficiency and shown to be inherited faithfully among the progeny. Furthermore, we demonstrated the practical utility of this vector system for positional cloning in Arabidopsis. A TAC contig was constructed in the region of the SGR1 locus, and individual clones with ca. 80-kb inserts were tested for their ability to complement the gravitropic defects of a homozygous mutant line. Successful complementation enabled the physical location of SGR1 to be delimited with high precision and confidence.
Resumo:
The structures of the genes encoding the α1 and β1 subunits of murine soluble guanylyl cyclase (sGC) were determined. Full-length cDNAs isolated from mouse lungs encoding the α1 (2.5 kb) and β1 (3.3 kb) subunits are presented in this report. The α1 sGC gene is approximately 26.4 kb and contains nine exons, whereas the β1 sGC gene spans 22 kb and consists of 14 exons. The positions of exon/intron boundaries and the sizes of introns for both genes are described. Comparison of mouse genomic organization with the Human Genome Database predicted the exon/intron boundaries of the human genes and revealed that human and mouse α1 and β1 sGC genes have similar structures. Both mouse genes are localized on the third chromosome, band 3E3-F1, and are separated by a fragment that is 2% of the chromosomal length. The 5′ untranscribed regions of α1 and β1 subunit genes were subcloned into luciferase reporter constructs, and the functional analysis of promoter activity was performed in murine neuroblastoma N1E-115 cells. Our results indicate that the 5′ untranscribed regions for both genes possess independent promoter activities and, together with the data on chromosomal localization, suggest independent regulation of both genes.
Resumo:
Plant phylogenetic estimates are most likely to be reliable when congruent evidence is obtained independently from the mitochondrial, plastid, and nuclear genomes with all methods of analysis. Here, results are presented from separate and combined genomic analyses of new and previously published data, including six and nine genes (8,911 bp and 12,010 bp, respectively) for different subsets of taxa that suggest Amborella + Nymphaeales (water lilies) are the first-branching angiosperm lineage. Before and after tree-independent noise reduction, most individual genomic compartments and methods of analysis estimated the Amborella + Nymphaeales basal topology with high support. Previous phylogenetic estimates placing Amborella alone as the first extant angiosperm branch may have been misled because of a series of specific problems with paralogy, suboptimal outgroups, long-branch taxa, and method dependence. Ancestral character state reconstructions differ between the two topologies and affect inferences about the features of early angiosperms.
Resumo:
Analyses of complete genomes indicate that a massive prokaryotic gene transfer (or transfers) preceded the formation of the eukaryotic cell. In comparisons of the entire set of Methanococcus jannaschii genes with their orthologs from Escherichia coli, Synechocystis 6803, and the yeast Saccharomyces cerevisiae, it is shown that prokaryotic genomes consist of two different groups of genes. The deeper, diverging informational lineage codes for genes which function in translation, transcription, and replication, and also includes GTPases, vacuolar ATPase homologs, and most tRNA synthetases. The more recently diverging operational lineage codes for amino acid synthesis, the biosynthesis of cofactors, the cell envelope, energy metabolism, intermediary metabolism, fatty acid and phospholipid biosynthesis, nucleotide biosynthesis, and regulatory functions. In eukaryotes, the informational genes are most closely related to those of Methanococcus, whereas the majority of operational genes are most closely related to those of Escherichia, but some are closest to Methanococcus or to Synechocystis.
Resumo:
Loss of genomic integrity is a defining feature of many human malignancies, including human papillomavirus (HPV)-associated preinvasive and invasive genital squamous lesions. Here we show that aberrant mitotic spindle pole formation caused by abnormal centrosome numbers represents an important mechanism in accounting for numeric chromosomal alterations in HPV-associated carcinogenesis. Similar to what we found in histopathological specimens, HPV-16 E6 and E7 oncoproteins cooperate to induce abnormal centrosome numbers, aberrant mitotic spindle pole formation, and genomic instability. The low-risk HPV-6 E6 and E7 proteins did not induce such abnormalities. Whereas the HPV-16 E6 oncoprotein has no immediate effects on centrosome numbers, HPV-16 E7 rapidly induces abnormal centrosome duplication. Thus our results suggest a model whereby HPV-16 E7 induces centrosome-related mitotic disturbances that are potentiated by HPV-16 E6.
Resumo:
We examined the MLL genomic translocation breakpoint in acute myeloid leukemia of infant twins. Southern blot analysis in both cases showed two identical MLL gene rearrangements indicating chromosomal translocation. The rearrangements were detectable in the second twin before signs of clinical disease and the intensity relative to the normal fragment indicated that the translocation was not constitutional. Fluorescence in situ hybridization with an MLL-specific probe and karyotype analyses suggested t(11;22)(q23;q11.2) disrupting MLL. Known 5′ sequence from MLL but unknown 3′ sequence from chromosome band 22q11.2 formed the breakpoint junction on the der(11) chromosome. We used panhandle variant PCR to clone the translocation breakpoint. By ligating a single-stranded oligonucleotide that was homologous to known 5′ MLL genomic sequence to the 5′ ends of BamHI-digested DNA through a bridging oligonucleotide, we formed the stem–loop template for panhandle variant PCR which yielded products of 3.9 kb. The MLL genomic breakpoint was in intron 7. The sequence of the partner DNA from band 22q11.2 was identical to the hCDCrel (human cell division cycle related) gene that maps to the region commonly deleted in DiGeorge and velocardiofacial syndromes. Both MLL and hCDCrel contained homologous CT, TTTGTG, and GAA sequences within a few base pairs of their respective breakpoints, which may have been important in uniting these two genes by translocation. Reverse transcriptase-PCR amplified an in-frame fusion of MLL exon 7 to hCDCrel exon 3, indicating that an MLL-hCDCrel chimeric mRNA had been transcribed. Panhandle variant PCR is a powerful strategy for cloning translocation breakpoints where the partner gene is undetermined. This application of the method identified a region of chromosome band 22q11.2 involved in both leukemia and a constitutional disorder.
Resumo:
The representational difference analysis (RDA) and other subtraction techniques are used to enrich sample-specific sequences by elimination of ubiquitous sequences existing in both the sample of interest (tester) and the subtraction partner (driver). While applying the RDA to genomic DNA of cutaneous lymphoma cells in order to identify tumor relevant alterations, we predominantly isolated repetitive sequences and artificial repeat-mediated fusion products of otherwise independent PCR fragments (PCR hybrids). Since these products severely interfered with the isolation of tester-specific fragments, we developed a considerably more robust and efficient approach, termed ligation-mediated subtraction (Limes). In first applications of Limes, genomic sequences and/or transcripts of genes involved in the regulation of transcription, such as transforming growth factor β stimulated clone 22 related gene (TSC-22R), cell death and cytokine production (caspase-1) or antigen presentation (HLA class II sequences), were found to be completely absent in a cutaneous lymphoma line. On the assumption that mutations in tumor-relevant genes can affect their transcription pattern, a protocol was developed and successfully applied that allows the identification of such sequences. Due to these results, Limes may substitute/supplement other subtraction/comparison techniques such as RDA or DNA microarray techniques in a variety of different research fields.
The Zebrafish Information Network (ZFIN): a resource for genetic, genomic and developmental research
Resumo:
The Zebrafish Information Network, ZFIN, is a WWW community resource of zebrafish genetic, genomic and developmental research information (http://zfin.org). ZFIN provides an anatomical atlas and dictionary, developmental staging criteria, research methods, pathology information and a link to the ZFIN relational database (http://zfin.org/ZFIN/). The database, built on a relational, object-oriented model, provides integrated information about mutants, genes, genetic markers, mapping panels, publications and contact information for the zebrafish research community. The database is populated with curated published data, user submitted data and large dataset uploads. A broad range of data types including text, images, graphical representations and genetic maps supports the data. ZFIN incorporates links to other genomic resources that provide sequence and ortholog data. Zebrafish nomenclature guidelines and an automated registration mechanism for new names are provided. Extensive usability testing has resulted in an easy to learn and use forms interface with complex searching capabilities.
Resumo:
The Homeodomain Resource is an annotated collection of non-redundant protein sequences, three-dimensional structures and genomic information for the homeodomain protein family. Release 3.0 contains 795 full-length homeodomain-containing sequences, 32 experimentally-derived structures and 143 homeobox loci implicated in human genetic disorders. Entries are fully hyperlinked to facilitate easy retrieval of the original records from source databases. A simple search engine with a graphical user interface is provided to query the component databases and assemble customized data sets. A new feature for this release is the addition of DNA recognition sites for all human homeodomain proteins described in the literature. The Homeodomain Resource is freely available through the World Wide Web at http://genome.nhgri.nih.gov/homeodomain.
Resumo:
The extremely halophilic archaeon Halobacterium sp. NRC-1 can grow phototrophically by means of light-driven proton pumping by bacteriorhodopsin in the purple membrane. Here, we show by genetic analysis of the wild type, and insertion and double-frame shift mutants of Bat that this transcriptional regulator coordinates synthesis of a structural protein and a chromophore for purple membrane biogenesis in response to both light and oxygen. Analysis of the complete Halobacterium sp. NRC-1 genome sequence showed that the regulatory site, upstream activator sequence (UAS), the putative binding site for Bat upstream of the bacterio-opsin gene (bop), is also present upstream to the other Bat-regulated genes. The transcription regulator Bat contains a photoresponsive cGMP-binding (GAF) domain, and a bacterial AraC type helix–turn–helix DNA binding motif. We also provide evidence for involvement of the PAS/PAC domain of Bat in redox-sensing activity by genetic analysis of a purple membrane overproducer. Five additional Bat-like putative regulatory genes were found, which together are likely to be responsible for orchestrating the complex response of this archaeon to light and oxygen. Similarities of the bop-like UAS and transcription factors in diverse organisms, including a plant and a γ-proteobacterium, suggest an ancient origin for this regulon capable of coordinating light and oxygen responses in the three major branches of the evolutionary tree of life. Finally, sensitivity of four of five regulon genes to DNA supercoiling is demonstrated and correlated to presence of alternating purine–pyrimidine sequences (RY boxes) near the regulated promoters.
Resumo:
Gene expression profiling provides powerful analyses of transcriptional responses to cellular perturbation. In contrast to DNA array-based methods, reporter gene technology has been underused for this application. Here we describe a genomewide, genome-registered collection of Escherichia coli bioluminescent reporter gene fusions. DNA sequences from plasmid-borne, random fusions of E. coli chromosomal DNA to a Photorhabdus luminescens luxCDABE reporter allowed precise mapping of each fusion. The utility of this collection covering about 30% of the transcriptional units was tested by analyzing individual fusions representative of heat shock, SOS, OxyR, SoxRS, and cya/crp stress-responsive regulons. Each fusion strain responded as anticipated to environmental conditions known to activate the corresponding regulatory circuit. Thus, the collection mirrors E. coli's transcriptional wiring diagram. This genomewide collection of gene fusions provides an independent test of results from other gene expression analyses. Accordingly, a DNA microarray-based analysis of mitomycin C-treated E. coli indicated elevated expression of expected and unanticipated genes. Selected luxCDABE fusions corresponding to these up-regulated genes were used to confirm or contradict the DNA microarray results. The power of partnering gene fusion and DNA microarray technology to discover promoters and define operons was demonstrated when data from both suggested that a cluster of 20 genes encoding production of type I extracellular polysaccharide in E. coli form a single operon.
Resumo:
DNA ligase IV (Lig4) and the DNA-dependent protein kinase (DNA-PK) function in nonhomologous end joining (NHEJ). However, although Lig4 deficiency causes late embryonic lethality, deficiency in DNA-PK subunits (Ku70, Ku80, and DNA-PKcs) does not. Here we demonstrate that, similar to p53 deficiency, ataxia-telangiectasia-mutated (ATM) gene deficiency rescues the embryonic lethality and neuronal apoptosis, but not impaired lymphocyte development, associated with Lig4 deficiency. However, in contrast to p53 deficiency, ATM deficiency enhances deleterious effects of Lig4 deficiency on growth potential of embryonic fibroblasts (MEFs) and genomic instability in both MEFs and cultured progenitor lymphocytes, demonstrating significant differences in the interplay of p53 vs. ATM with respect to NHEJ. Finally, in dramatic contrast to effects on Lig4 deficiency, ATM deficiency causes early embryonic lethality in Ku- or DNA-PKcs-deficient mice, providing evidence for an NHEJ-independent role for the DNA-PK holoenzyme.