32 resultados para gene silencing


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although silencing is a significant form of transcriptional regulation, the functional and mechanistic limits of its conservation have not yet been established. We have identified the Schizosaccharomyces pombe hst4+ gene as a member of the SIR2/HST silencing gene family that is defined in organisms ranging from bacteria to humans. hst4Δ mutants grow more slowly than wild-type cells and have abnormal morphology and fragmented DNA. Mutant strains show decreased silencing of reporter genes at both telomeres and centromeres. hst4+ appears to be important for centromere function as well because mutants have elevated chromosome-loss rates and are sensitive to a microtubule-destabilizing drug. Consistent with a role in chromatin structure, Hst4p localizes to the nucleus and appears concentrated in the nucleolus. hst4Δ mutant phenotypes, including growth and silencing phenotypes, are similar to those of the Saccharomyces cerevisiae HSTs, and at a molecular level, hst4+ is most similar to HST4. Furthermore, hst4+ is a functional homologue of S. cerevisiae HST3 and HST4 in that overexpression of hst4+ rescues the temperature-sensitivity and telomeric silencing defects of an hst3Δ hst4Δ double mutant. These results together demonstrate that a SIR-like silencing mechanism is conserved in the distantly related yeasts and is likely to be found in other organisms from prokaryotes to mammals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the budding yeast, Saccharomyces cerevisiae, actively transcribed tRNA genes can negatively regulate adjacent RNA polymerase II (pol II)-transcribed promoters. This tRNA gene-mediated silencing is independent of the orientation of the tRNA gene and does not require direct, steric interference with the binding of either upstream pol II factors or the pol II holoenzyme. A mutant was isolated in which this form of silencing is suppressed. The responsible point mutation affects expression of the Cbf5 protein, a small nucleolar ribonucleoprotein protein required for correct processing of rRNA. Because some early steps in the S. cerevisiae pre-tRNA biosynthetic pathway are nucleolar, we examined whether the CBF5 mutation might affect this localization. Nucleoli were slightly fragmented, and the pre-tRNAs went from their normal, mostly nucleolar location to being dispersed in the nucleoplasm. A possible mechanism for tRNA gene-mediated silencing is suggested in which subnuclear localization of tRNA genes antagonizes transcription of nearby genes by pol II.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Globin genes are subject to tissue-specific and developmental stage-specific regulation. A switch from human fetal (gamma)-to adult (beta)-globin expression occurs within erythroid precursor cells of the adult lineage. Previously we and others showed by targeted gene disruption that the zinc finger gene, erythroid Krüppel-like factor (EKLF), is required for expression of the beta-globin gene in mice, presumably through interaction with a high-affinity binding site in the proximal promoter. To examine the role of EKLF in the developmental regulation of the human gamma-globin gene we interbred EKLF heterozygotes (+/-) with mice harboring a human beta-globin yeast artificial chromosome transgene. We find that in the absence of EKLF, while human beta-globin expression is dramatically reduced, gamma-globin transcripts are elevated approximately 5-fold. Impaired silencing of gamma-globin expression identifies EKLF as the first transcription factor participating quantitatively in the gamma-globin to beta-globin switch. Our findings are compatible with a competitive model of switching in which EKLF mediates an adult stage-specific interaction between the beta-globin gene promoter and the locus control region that excludes the gamma-globin gene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

E-Cadherin, a cell adhesion molecule, which plays a key role in maintaining the epithelial phenotype, is regarded as an invasion-suppressor gene in light of accumulating evidence from in vitro experiments and clinical observations. In an attempt to clarify the mechanism responsible for inactivation of this gene in carcinomas, we investigated the methylation state around the promoter region by digestion of DNA with the methylation-sensitive restriction enzyme Hpa II, as CpG methylation of the promoter has been postulated to be a mechanism of transcriptional inactivation of some genes. We found that E-cadherin expression-negative carcinoma cell lines were accompanied by the hypermethylation state, whereas E-cadherin-positive cell lines were not. Furthermore, treatment of E-cadherin-negative carcinoma cells with the demethylating agent 5-azacytidine resulted in reexpression of the gene and reversion of scattered spindle-shaped cells to cells with epithelial morphology. These results suggest that hypermethylation around the promoter may be a mechanism of E-cadherin inactivation in human carcinomas and that treatment of E-cadherin-inactivated cells with a demethylating agent may cause gene expression reversion leading to epithelial morphogenesis with acquisition of the homophilic cell-cell adhesive property.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mouse Snrpn gene encodes the Smn protein, which is involved in RNA splicing. The gene maps to a region in the central part of chromosome 7 that is syntenic to the Prader–Willi/Angelman syndromes (PWS-AS) region on human chromosome 15q11-q13. The mouse gene, like its human counterpart, is imprinted and paternally expressed, primarily in brain and heart. We provide here a detailed description of the structural features and differential methylation pattern of the gene. We have identified a maternally methylated region at the 5′ end (DMR1), which correlates inversely with the Snrpn paternal expression. We also describe a region at the 3′ end of the gene (DMR2) that is preferentially methylated on the paternal allele. Analysis of Snrpn mRNA levels in a methylase-deficient mouse embryo revealed that maternal methylation of DMR1 may play a role in silencing the maternal allele. Yet both regions, DMR1 and DMR2, inherit the parental-specific methylation profile from the gametes. This methylation pattern is erased in 12.5-days postcoitum (dpc) primordial germ cells and reestablished during gametogenesis. DMR1 is remethylated during oogenesis, whereas DMR2 is remethylated during spermatogenesis. Once established, these methylation patterns are transmitted to the embryo and maintained, protected from methylation changes during embryogenesis and cell differentiation. Transfections of DMR1 and DMR2 into embryonic stem cells and injection into pronuclei of fertilized eggs reveal that embryonic cells lack the capacity to establish anew the differential methylation pattern of Snrpn. That all PWS patients lack DMR1, together with the overall high resemblance of the mouse gene to the human SNRPN, offers an excellent experimental tool to study the regional control of this imprinted chromosomal domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The respiratory gene cox2, normally present in the mitochondrion, was previously shown to have been functionally transferred to the nucleus during flowering plant evolution, possibly during the diversification of legumes. To search for novel intermediate stages in the process of intracellular gene transfer and to assess the evolutionary timing and frequency of cox2 transfer, activation, and inactivation, we examined nuclear and mitochondrial (mt) cox2 presence and expression in over 25 legume genera and mt cox2 presence in 392 genera. Transfer and activation of cox2 appear to have occurred during recent legume evolution, more recently than previously inferred. Many intermediate stages of the gene transfer process are represented by cox2 genes in the studied legumes. Nine legumes contain intact copies of both nuclear and mt cox2, although transcripts could not be detected for some of these genes. Both cox2 genes are transcribed in seven legumes that are phylogenetically interspersed with species displaying only nuclear or mt cox2 expression. Inactivation of cox2 in each genome has taken place multiple times and in a variety of ways, including loss of detectable transcripts or transcript editing and partial to complete gene loss. Phylogenetic evidence shows about the same number (3–5) of separate inactivations of nuclear and mt cox2, suggesting that there is no selective advantage for a mt vs. nuclear location of cox2 in plants. The current distribution of cox2 presence and expression between the nucleus and mitochondrion in the studied legumes is probably the result of chance mutations silencing either cox2 gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silencing is a universal form of transcriptional regulation in which regions of the genome are reversibly inactivated by changes in chromatin structure. Sir2 (Silent Information Regulator) protein is unique among the silencing factors in Saccharomyces cerevisiae because it silences the rDNA as well as the silent mating-type loci and telomeres. Discovery of a gene family of Homologues of Sir Two (HSTs) in organisms from bacteria to humans suggests that SIR2’s silencing mechanism might be conserved. The Sir2 and Hst proteins share a core domain, which includes two diagnostic sequence motifs of unknown function as well as four cysteines of a putative zinc finger. We demonstrate by mutational analyses that the conserved core and each of its motifs are essential for Sir2p silencing. Chimeras between Sir2p and a human Sir2 homologue (hSir2Ap) indicate that this human protein’s core can substitute for that of Sir2p, implicating the core as a silencing domain. Immunofluorescence studies reveal partially disrupted localization, accounting for the yeast–human chimeras’ ability to function at only a subset of Sir2p’s target loci. Together, these results support a model for the involvement of distinct Sir2p-containing complexes in HM/telomeric and rDNA silencing and that HST family members, including the widely expressed hSir2A, may perform evolutionarily conserved functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The trithorax gene family contains members implicated in the control of transcription, development, chromosome structure, and human leukemia. A feature shared by some family members, and by other proteins that function in chromatin-mediated transcriptional regulation, is the presence of a 130- to 140-amino acid motif dubbed the SET or Tromo domain. Here we present analysis of SET1, a yeast member of the trithorax gene family that was identified by sequence inspection to encode a 1080-amino acid protein with a C-terminal SET domain. In addition to its SET domain, which is 40–50% identical to those previously characterized, SET1 also shares dispersed but significant similarity to Drosophila and human trithorax homologues. To understand SET1 function(s), we created a null mutant. Mutant strains, although viable, are defective in transcriptional silencing of the silent mating-type loci and telomeres. The telomeric silencing defect is rescued not only by full-length episomal SET1 but also by the conserved SET domain of SET1. set1 mutant strains display other phenotypes including morphological abnormalities, stationary phase defects, and growth and sporulation defects. Candidate genes that may interact with SET1 include those with functions in transcription, growth, and cell cycle control. These data suggest that yeast SET1, like its SET domain counterparts in other organisms, functions in diverse biological processes including transcription and chromatin structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased histone acetylation has been correlated with increased transcription, and regions of heterochromatin are generally hypoacetylated. In investigating the cause-and-effect relationship between histone acetylation and gene activity, we have characterized two yeast histone deacetylase complexes. Histone deacetylase-A (HDA) is an ≈350-kDa complex that is highly sensitive to the deacetylase inhibitor trichostatin A. Histone deacetylase-B (HDB) is an ≈600-kDa complex that is much less sensitive to trichostatin A. The HDA1 protein (a subunit of the HDA activity) shares sequence similarity to RPD3, a factor required for optimal transcription of certain yeast genes. RPD3 is associated with the HDB activity. HDA1 also shares similarity to three new open reading frames in yeast, designated HOS1, HOS2, and HOS3. We find that both hda1 and rpd3 deletions increase acetylation levels in vivo at all sites examined in both core histones H3 and H4, with rpd3 deletions having a greater impact on histone H4 lysine positions 5 and 12. Surprisingly, both hda1 and rpd3 deletions increase repression at telomeric loci, which resemble heterochromatin with rpd3 having a greater effect. In addition, rpd3 deletions retard full induction of the PHO5 promoter fused to the reporter lacZ. These data demonstrate that histone acetylation state has a role in regulating both heterochromatic silencing and regulated gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virally transduced genes are often silenced after integration into the host genome. Chromatin immunoprecipitation and nuclease sensitivity experiments now demonstrate that silencing of the transgene is characterized by deacetylation of histone H4 lysines and chromatin condensation. Trichostatin A treatment results in dramatic reactivation of gene expression that is preceded by histone acetylation and chromatin decondensation. Analysis of individual histone H4 lysines demonstrate that chromatin domain opening is coincident with rapid acetylation of histone H4 K5, K12, and K16 and that maintenance of the open domain is correlated with acetylation of histone H4 K8. Removal of trichostatin A results in rapid deacetylation of histone H4 K8, chromatin condensation, and transcription silencing. The results suggest that deacetylation of histone H4 lysines and coincident chromatin condensation are critically involved in the silencing of virally transduced genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene therapy for patients with hemoglobin disorders has been hampered by the inability of retrovirus vectors to transfer globin genes and their cis-acting regulatory sequences into hematopoietic stem cells without rearrangement. In addition, the expression from intact globin gene vectors has been variable in red blood cells due to position effects and retrovirus silencing. We hypothesized that by substituting the globin gene promoter for the promoter of another gene expressed in red blood cells, we could generate stable retrovirus vectors that would express globin at sufficient levels to treat hemoglobinopathies. Recently, we have shown that the human ankyrin (Ank) gene promoter directs position-independent, copy number-dependent expression of a linked γ-globin gene in transgenic mice. We inserted the Ank/Aγ-globin gene into retrovirus vectors that could transfer one or two copies of the Ank/Aγ-globin gene to target cells. Both vectors were stable, transferring only intact proviral sequences into primary mouse hematopoietic stem cells. Expression of Ank/Aγ-globin mRNA in mature red blood cells was 3% (single copy) and 8% (double copy) of the level of mouse α-globin mRNA. We conclude that these novel retrovirus vectors may be valuable for treating a variety of red cell disorders by gene replacement therapy including severe β-thalassemia if the level of expression can be further increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methylation of cytosines in the dinucleotide CpG has been shown to suppress transcription of a number of tissue-specific genes, yet the precise mechanism is not fully understood. The vertebrate globin genes were among the first examples in which an inverse correlation was shown between CpG methylation and transcription. We studied the methylation pattern of the 235-bp ρ-globin gene promoter in genomic DNA from primary chicken erythroid cells using the sodium bisulfite conversion technique and found all CpGs in the promoter to be methylated in erythroid cells from adult chickens in which the ρ-globin gene is silent but unmethylated in 5-day (primitive) embryonic red cells in which the gene is transcribed. To elucidate further the mechanism of methylation-induced silencing, an expression construct consisting of 235 bp of 5′ promoter sequence of the ρ-globin gene along with a strong 5′ erythroid enhancer driving a chloramphenicol acetyltransferase reporter gene, ρ-CAT, was transfected into primary avian erythroid cells derived from 5-day embryos. Methylation of just the 235-bp ρ-globin gene promoter fragment at every CpG resulted in a 20- to 30-fold inhibition of transcription, and this effect was not overridden by the presence of potent erythroid-specific enhancers. The ability of the 235-bp ρ-globin gene promoter to bind to a DNA Methyl Cytosine binding Protein Complex (MeCPC) was tested in electrophoretic mobility shift assays utilizing primary avian erythroid cell nuclear extract. The results were that fully methylated but not unmethylated 235-bp ρ-globin gene promoter fragment could compete efficiently for MeCPC binding. These results are a direct demonstration that site-specific methylation of a globin gene promoter at the exact CpGs that are methylated in vivo can silence transcription in homologous primary erythroid cells. Further, these data implicate binding of MeCPC to the promoter in the mechanism of silencing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epigenetic silencing of foreign genes introduced into plants poses an unsolved problem for transgenic technology. Here we have used the simple multicellular green alga Volvox carteri as a model to analyse the relation of DNA methylation to transgenic silencing. Volvox DNA contains on average 1.1% 5-methylcytosine and 0.3% N6-methyladenine, as revealed by electrospray mass spectrometry and phosphoimaging of chromatographically separated 32P-labelled nucleotides. In two nuclear transformants of V.carteri, produced in 1993 by biolistic bombardment with a foreign arylsulphatase gene (C-ars), the transgene is still expressed in one (Hill 181), but not in the other (Hill 183), after an estimated 500–1000 generations. Each transformant clone contains multiple intact copies of C-ars, most of them integrated into the genome as tandem repeats. When the bisulphite genomic sequencing protocol was applied to examine two select regions of transgenic C-ars, we found that the inactivated copies (Hill 183) exhibited a high-level methylation (40%) of CpG dinucleotides, whereas the active copies (Hill 181) displayed low-level (7%) CpG methylation. These are average values from 40 PCR clones sequenced from each DNA strand in the two portions of C-ars. The observed correlation of CpG methylation and transgene inactivation in a green alga will be discussed in the light of transcriptional silencing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clear cell-type renal cell carcinomas (clear RCC) are characterized almost universally by loss of heterozygosity on chromosome 3p, which usually involves any combination of three regions: 3p25-p26 (harboring the VHL gene), 3p12-p14.2 (containing the FHIT gene), and 3p21-p22, implying inactivation of the resident tumor-suppressor genes (TSGs). For the 3p21-p22 region, the affected TSGs remain, at present, unknown. Recently, the RAS association family 1 gene (isoform RASSF1A), located at 3p21.3, has been identified as a candidate lung and breast TSG. In this report, we demonstrate aberrant silencing by hypermethylation of RASSF1A in both VHL-caused clear RCC tumors and clear RCC without VHL inactivation. We found hypermethylation of RASSF1A's GC-rich putative promoter region in most of analyzed samples, including 39 of 43 primary tumors (91%). The promoter was methylated partially or completely in all 18 RCC cell lines analyzed. Methylation of the GC-rich putative RASSF1A promoter region and loss of transcription of the corresponding mRNA were related causally. RASSF1A expression was reactivated after treatment with 5-aza-2′-deoxycytidine. Forced expression of RASSF1A transcripts in KRC/Y, a renal carcinoma cell line containing a normal and expressed VHL gene, suppressed growth on plastic dishes and anchorage-independent colony formation in soft agar. Mutant RASSF1A had reduced growth suppression activity significantly. These data suggest that RASSF1A is the candidate renal TSG gene for the 3p21.3 region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterochromatin protein 1 (HP1) is a conserved component of the highly compact chromatin of higher eukaryotic centromeres and telomeres. Cytogenetic experiments in Drosophila have shown that HP1 localization into this chromatin is perturbed in mutants for the origin recognition complex (ORC) 2 subunit. ORC has a multisubunit DNA-binding activity that binds origins of DNA replication where it is required for origin firing. The DNA-binding activity of ORC is also used in the recruitment of the Sir1 protein to silence nucleation sites flanking silent copies of the mating-type genes in Saccharomyces cerevisiae. A fraction of HP1 in the maternally loaded cytoplasm of the early Drosophila embryo is associated with a multiprotein complex containing Drosophila melanogaster ORC subunits. This complex appears to be poised to function in heterochromatin assembly later in embryonic development. Here we report the identification of a novel component of this complex, the HP1/ORC-associated protein. This protein contains similarity to DNA sequence-specific HMG proteins and is shown to bind specific satellite sequences and the telomere-associated sequence in vitro. The protein is shown to have heterochromatic localization in both diploid interphase and mitotic chromosomes and polytene chromosomes. Moreover, the gene encoding HP1/ORC-associated protein was found to display reciprocal dose-dependent variegation modifier phenotypes, similar to those for mutants in HP1 and the ORC 2 subunit.