181 resultados para gene regulatory network
Resumo:
Targeting of gene regulatory factors to specific intranuclear sites may be critical for the accurate control of gene expression. The acute myelogenous leukemia 8;21 (AML1/ETO) fusion protein is encoded by a rearranged gene created by the ETO chromosomal translocation. This protein lacks the nuclear matrix-targeting signal that directs the AML1 protein to appropriate gene regulatory sites within the nucleus. Here we report that substitution of the chromosome 8-derived ETO protein for the multifunctional C terminus of AML1 precludes targeting of the factor to AML1 subnuclear domains. Instead, the AML1/ETO fusion protein is redirected by the ETO component to alternate nuclear matrix-associated foci. Our results link the ETO chromosomal translocation in AML with modifications in the intranuclear trafficking of the key hematopoietic regulatory factor, AML1. We conclude that misrouting of gene regulatory factors as a consequence of chromosomal translocations is an important characteristic of acute leukemias.
Resumo:
Transcriptional regulation in papillomaviruses depends on sequence-specific binding of the regulatory protein E2 to several sites in the viral genome. Crystal structures of bovine papillomavirus E2 DNA targets reveal a conformational variant of B-DNA characterized by a roll-induced writhe and helical repeat of 10.5 bp per turn. A comparison between the free and the protein-bound DNA demonstrates that the intrinsic structure of the DNA regions contacted directly by the protein and the deformability of the DNA region that is not contacted by the protein are critical for sequence-specific protein/DNA recognition and hence for gene-regulatory signals in the viral system. We show that the selection of dinucleotide or longer segments with appropriate conformational characteristics, when positioned at correct intervals along the DNA helix, can constitute a structural code for DNA recognition by regulatory proteins. This structural code facilitates the formation of a complementary protein–DNA interface that can be further specified by hydrogen bonds and nonpolar interactions between the protein amino acids and the DNA bases.
Resumo:
We previously demonstrated that α1B-adrenergic receptor (AR) gene transcription, mRNA, and functionally coupled receptors increase during 3% O2 exposure in aorta, but not in vena cava smooth muscle cells (SMC). We report here that α1BAR mRNA also increases during hypoxia in liver and lung, but not heart and kidney. A single 2.7-kb α1BAR mRNA was detected in aorta and vena cava during normoxia and hypoxia. The α1BAR 5′ flanking region was sequenced to −2,460 (relative to ATG +1). Transient transfection experiments identify the minimal promoter region between −270 and −143 and sequence between −270 and −248 that are required for transcription of the α1BAR gene in aorta and vena cava SMC during normoxia and hypoxia. An ATTAAA motif within this sequence specifically binds aorta, vena cava, and DDT1MF-2 nuclear proteins, and transcription primarily initiates downstream of this motif at approximately −160 in aorta SMC. Sequence between −837 and −273 conferred strong hypoxic induction of transcription in aorta, but not in vena cava SMC, whereas the cis-element for the transcription factor, hypoxia-inducible factor 1, conferred hypoxia-induced transcription in both aorta and vena cava SMC. These data identify sequence required for transcription of the α1BAR gene in vascular SMC and suggest the atypical TATA-box, ATTAAA, may mediate this transcription. Hypoxia-sensitive regions of the α1BAR gene also were identified that may confer the differential hypoxic increase in α1BAR gene transcription in aorta, but not in vena cava SMC.
Resumo:
Caveolae form the terminus for a major pathway of intracellular free cholesterol (FC) transport. Caveolin mRNA levels in confluent human skin fibroblasts were up-regulated following increased uptake of low density lipoprotein (LDL) FC. The increase induced by FC was not associated with detectable change in mRNA stability, indicating that caveolin mRNA levels were mediated at the level of gene transcription. A total of 924 bp of 5′ flanking region of the caveolin gene were cloned and sequenced. The promoter sequence included three G+C-rich potential sterol regulatory elements (SREs), a CAAT sequence and a Sp1 consensus sequence. Deletional mutagenesis of individual SRE-like sequences indicated that of these two (at −646 and −395 bp) were essential for the increased transcription rates mediated by LDL-FC, whereas the third was inconsequential. Gel shift analysis of protein binding from nuclear extracts to these caveolin promoter DNA sequences, together with DNase I footprinting, confirmed nucleoprotein binding to the SRE-like elements as part of the transcriptional response to LDL-FC. A supershift obtained with antibody to SRE-binding protein 1 (SPEBP-1) indicated that this protein binds at −395 bp. There was no reaction at −395 bp with anti-Sp1 antibody nor with either antibody at −646 bp. The cysteine protease inhibitor N-acetyl-leu-leu-norleucinal (ALLN), which inhibits SREBP catabolism, superinhibited caveolin mRNA levels regardless of LDL-FC. This finding suggests that SREBP inhibits caveolin gene transcription in contrast to its stimulating effect on other promoters. The findings of this study are consistent with the postulated role for caveolin as a regulator of cellular FC homeostasis in quiescent peripheral cells, and the coordinate regulation by SREBP of FC influx and efflux.
Resumo:
An essential component of regulated steroidogenesis is the translocation of cholesterol from the cytoplasm to the inner mitochondrial membrane where the cholesterol side-chain cleavage enzyme carries out the first committed step in steroidogenesis. Recent studies showed that a 30-kDa mitochondrial phosphoprotein, designated steroidogenic acute regulatory protein (StAR), is essential for this translocation. To allow us to explore the roles of StAR in a system amenable to experimental manipulation and to develop an animal model for the human disorder lipoid congenital adrenal hyperplasia (lipoid CAH), we used targeted gene disruption to produce StAR knockout mice. These StAR knockout mice were indistinguishable initially from wild-type littermates, except that males and females had female external genitalia. After birth, they failed to grow normally and died from adrenocortical insufficiency. Hormone assays confirmed severe defects in adrenal steroids—with loss of negative feedback regulation at hypothalamic–pituitary levels—whereas hormones constituting the gonadal axis did not differ significantly from levels in wild-type littermates. Histologically, the adrenal cortex of StAR knockout mice contained florid lipid deposits, with lesser deposits in the steroidogenic compartment of the testis and none in the ovary. The sex-specific differences in gonadal involvement support a two-stage model of the pathogenesis of StAR deficiency, with trophic hormone stimulation inducing progressive accumulation of lipids within the steroidogenic cells and ultimately causing their death. These StAR knockout mice provide a useful model system in which to determine the mechanisms of StAR’s essential roles in adrenocortical and gonadal steroidogenesis.
Resumo:
To gain more insight into the molecular mechanisms by which androgens stimulate lipogenesis and induce a marked accumulation of neutral lipids in the human prostate cancer cell line LNCaP, we studied their impact on the expression of lipogenic enzymes. Northern blot analysis of the steady-state mRNA levels of seven different lipogenic enzymes revealed that androgens coordinately stimulate the expression of enzymes belonging to the two major lipogenic pathways: fatty acid synthesis and cholesterol synthesis. In view of the important role of the recently characterized sterol regulatory element binding proteins (SREBPs) in the coordinate induction of lipogenic genes, we examined whether the observed effects of androgens on lipogenic gene expression are mediated by these transcription factors. Our findings indicate that androgens stimulate the expression of SREBP transcripts and precursor proteins and enhance the nuclear content of the mature active form of the transcription factor. Moreover, by using the fatty acid synthase gene as an experimental paradigm we demonstrate that the presence of an SREBP-binding site is essential for its regulation by androgens. These data support the hypothesis that SREBPs are involved in the coordinate regulation of lipogenic gene expression by androgens and provide evidence for the existence of a cascade mechanism of androgen-regulated gene expression.
Resumo:
Retinoids, synthetic and natural analogs of retinoic acid, exhibit potent growth inhibitory and cell differentiation activities that account for their beneficial effects in treating hyperproliferative diseases such as psoriasis, actinic keratosis, and certain neoplasias. Tazarotene is a synthetic retinoid that is used in the clinic for the treatment of psoriasis. To better understand the mechanism of retinoid action in the treatment of hyperproliferative diseases, we used a long-range differential display–PCR to isolate retinoid-responsive genes from primary human keratinocytes. We have identified a cDNA, tazarotene-induced gene 3 (TIG3; Retinoic Acid Receptor Responder 3) showing significant homology to the class II tumor suppressor gene, H-rev 107. Tazarotene treatment increases TIG3 expression in primary human keratinocytes and in vivo in psoriatic lesions. Increased TIG3 expression is correlated with decreased proliferation. TIG3 is expressed in a number of tissues, and expression is reduced in cancer cell lines and some primary tumors. In breast cancer cell lines, retinoid-dependent TIG3 induction is observed in lines that are growth suppressed by retinoids but not in nonresponsive lines. Transient over-expression of TIG3 in T47D or Chinese hamster ovary cells inhibits colony expansion. Finally, studies in 293 cells expressing TIG3 linked to an inducible promoter demonstrated decreased proliferation with increased TIG3 levels. These studies suggest that TIG3 may be a growth regulator that mediates some of the growth suppressive effects of retinoids.
Resumo:
The b locus encodes a transcription factor that regulates the expression of genes that produce purple anthocyanin pigment. Different b alleles are expressed in distinct tissues, causing tissue-specific anthocyanin production. Understanding how phenotypic diversity is produced and maintained at the b locus should provide models for how other regulatory genes, including those that influence morphological traits and development, evolve. We have investigated how different levels and patterns of pigmentation have evolved by determining the phenotypic and evolutionary relationships between 18 alleles that represent the diversity of b alleles in Zea mays. Although most of these alleles have few phenotypic differences, five alleles have very distinct tissue-specific patterns of pigmentation. Superimposing the phenotypes on the molecular phylogeny reveals that the alleles with strong and distinctive patterns of expression are closely related to alleles with weak expression, implying that the distinctive patterns have arisen recently. We have identified apparent insertions in three of the five phenotypically distinct alleles, and the fourth has unique upstream restriction fragment length polymorphisms relative to closely related alleles. The insertion in B-Peru has been shown to be responsible for its unique expression and, in the other two alleles, the presence of the insertion correlates with the phenotype. These results suggest that major changes in gene expression are probably the result of large-scale changes in DNA sequence and/or structure most likely mediated by transposable elements.
Resumo:
We report here the functional characterization of an essential Saccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of the mpr1-1 mutation that causes the following pleiotropic defects. At 24°C growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36°C on either carbon source. Microscopic observation of cells growing on glucose at 24°C shows that most of them bear a large bud, whereas mitochondrial morphology is profoundly altered. A shift to the nonpermissive temperature produces aberrant elongated cell morphologies, whereas the nucleus fails to divide. Flow cytometry profiles after the shift to the nonpermissive temperature indicate overreplication of both nuclear and mitochondrial DNA. Consistently with the identification of Mpr1p with a proteasomal subunit, the mutation is complemented by the human POH1 proteasomal gene. Moreover, the mpr1-1 mutant grown to stationary phase accumulates ubiquitinated proteins. Localization of the Rpn11p/Mpr1p protein has been studied by green fluorescent protein fusion, and the fusion protein has been found to be mainly associated to cytoplasmic structures. For the first time, a proteasomal mutation has also revealed an associated mitochondrial phenotype. We actually showed, by the use of [rho°] cells derived from the mutant, that the increase in DNA content per cell is due in part to an increase in the amount of mitochondrial DNA. Moreover, microscopy of mpr1-1 cells grown on glucose showed that multiple punctate mitochondrial structures were present in place of the tubular network found in the wild-type strain. These data strongly suggest that mpr1-1 is a valuable tool with which to study the possible roles of proteasomal function in mitochondrial biogenesis.
Resumo:
The proper localization of resident membrane proteins to the trans-Golgi network (TGN) involves mechanisms for both TGN retention and retrieval from post-TGN compartments. In this study we report identification of a new gene, GRD20, involved in protein sorting in the TGN/endosomal system of Saccharomyces cerevisiae. A strain carrying a transposon insertion allele of GRD20 exhibited rapid vacuolar degradation of the resident TGN endoprotease Kex2p and aberrantly secreted ∼50% of the soluble vacuolar hydrolase carboxypeptidase Y. The Kex2p mislocalization and carboxypeptidase Y missorting phenotypes were exhibited rapidly after loss of Grd20p function in grd20 temperature-sensitive mutant strains, indicating that Grd20p plays a direct role in these processes. Surprisingly, little if any vacuolar degradation was observed for the TGN membrane proteins A-ALP and Vps10p, underscoring a difference in trafficking patterns for these proteins compared with that of Kex2p. A grd20 null mutant strain exhibited extremely slow growth and a defect in polarization of the actin cytoskeleton, and these two phenotypes were invariably linked in a collection of randomly mutagenized grd20 alleles. GRD20 encodes a hydrophilic protein that partially associates with the TGN. The discovery of GRD20 suggests a link between the cytoskeleton and function of the yeast TGN.
Resumo:
We have reported some type II restriction-modification (RM) gene complexes on plasmids resist displacement by an incompatible plasmid through postsegregational host killing. Such selfish behavior may have contributed to the spread and maintenance of RM systems. Here we analyze the role of regulatory genes (C), often found linked to RM gene complexes, in their interaction with the host and the other RM gene complexes. We identified the C gene of EcoRV as a positive regulator of restriction. A C mutation eliminated postsegregational killing by EcoRV. The C system has been proposed to allow establishment of RM systems in new hosts by delaying the appearance of restriction activity. Consistent with this proposal, bacteria preexpressing ecoRVC were transformed at a reduced efficiency by plasmids carrying the EcoRV RM gene complex. Cells carrying the BamHI RM gene complex were transformed at a reduced efficiency by a plasmid carrying a PvuII RM gene complex, which shares the same C specificity. The reduction most likely was caused by chromosome cleavage at unmodified PvuII sites by prematurely expressed PvuII restriction enzyme. Therefore, association of the C genes of the same specificity with RM gene complexes of different sequence specificities can confer on a resident RM gene complex the capacity to abort establishment of a second, incoming RM gene complex. This phenomenon, termed “apoptotic mutual exclusion,” is reminiscent of suicidal defense against virus infection programmed by other selfish elements. pvuIIC and bamHIC genes define one incompatibility group of exclusion whereas ecoRVC gene defines another.
Resumo:
The rpoH regulatory region of different members of the enteric bacteria family was sequenced or downloaded from GenBank and compared. In addition, the transcriptional start sites of rpoH of Yersinia frederiksenii and Proteus mirabilis, two distant members of this family, were determined. Sequences similar to the σ70 promoters P1, P4 and P5, to the σE promoter P3 and to boxes DnaA1, DnaA2, cAMP receptor protein (CRP) boxes CRP1, CRP2 and box CytR present in Escherichia coli K12, were identified in sequences of closely related bacteria such as: E.coli, Shigella flexneri, Salmonella enterica serovar Typhimurium, Citrobacter freundii, Enterobacter cloacae and Klebsiella pneumoniae. In more distant bacteria, Y.frederiksenii and P.mirabilis, the rpoH regulatory region has a distal P1-like σ70 promoter and two proximal promoters: a heat-induced σE-like promoter and a σ70 promoter. Sequences similar to the regulatory boxes were not identified in these bacteria. This study suggests that the general pattern of transcription of the rpoH gene in enteric bacteria includes a distal σ70 promoter, >200 nt upstream of the initiation codon, and two proximal promoters: a heat-induced σE-like promoter and a σ70 promoter. A second proximal σ70 promoter under catabolite-regulation is probably present only in bacteria closely related to E.coli.
Resumo:
Aquatic photosynthetic organisms, including the green alga Chlamydomonas reinhardtii, induce a set of genes for a carbon-concentrating mechanism (CCM) to acclimate to CO2-limiting conditions. This acclimation is modulated by some mechanisms in the cell to sense CO2 availability. Previously, a high-CO2-requiring mutant C16 defective in an induction of the CCM was isolated from C. reinhardtii by gene tagging. By using this pleiotropic mutant, we isolated a nuclear regulatory gene, Ccm1, encoding a 699-aa hydrophilic protein with a putative zinc-finger motif in its N-terminal region and a Gln repeat characteristic of transcriptional activators. Introduction of Ccm1 into this mutant restored an active carbon transport through the CCM, development of a pyrenoid structure in the chloroplast, and induction of a set of CCM-related genes. That a 5,128-base Ccm1 transcript and also the translation product of 76 kDa were detected in both high- and low-CO2 conditions suggests that CCM1 might be modified posttranslationally. These data indicate that Ccm1 is essential to control the induction of CCM by sensing CO2 availability in Chlamydomonas cells. In addition, complementation assay and identification of the mutation site of another pleiotropic mutant, cia5, revealed that His-54 within the putative zinc-finger motif of the CCM1 is crucial to its regulatory function.
Resumo:
Sterol regulatory element-binding protein-1c (SREBP-1c) enhances transcription of genes encoding enzymes of unsaturated fatty acid biosynthesis in liver. SREBP-1c mRNA is known to increase when cells are treated with agonists of liver X receptor (LXR), a nuclear hormone receptor, and to decrease when cells are treated with unsaturated fatty acids, the end products of SREBP-1c action. Here we show that unsaturated fatty acids lower SREBP-1c mRNA levels in part by antagonizing the actions of LXR. In cultured rat hepatoma cells, arachidonic acid and other fatty acids competitively inhibited activation of the endogenous SREBP-1c gene by an LXR ligand. Arachidonate also blocked the activation of a synthetic LXR-dependent promoter in transfected human embryonic kidney-293 cells. In vitro, arachidonate and other unsaturated fatty acids competitively blocked activation of LXR, as reflected by a fluorescence polarization assay that measures ligand-dependent binding of LXR to a peptide derived from a coactivator. These data offer a potential mechanism that partially explains the long-known ability of dietary unsaturated fatty acids to decrease the synthesis and secretion of fatty acids and triglycerides in livers of humans and other animals.
Resumo:
The recently cloned NPR1 gene of Arabidopsis thaliana is a key regulator of acquired resistance responses. Upon induction, NPR1 expression is elevated and the NPR1 protein is activated, in turn inducing expression of a battery of downstream pathogenesis-related genes. In this study, we found that NPR1 confers resistance to the pathogens Pseudomonas syringae and Peronospora parasitica in a dosage-dependent fashion. Overexpression of NPR1 leads to enhanced resistance with no obvious detrimental effect on the plants. Thus, for the first time, a single gene is shown to be a workable target for genetic engineering of nonspecific resistance in plants.