57 resultados para estradiol cypionate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is considerable evidence from animal studies that gonadal steroid hormones modulate neuronal activity and affect behavior. To study this in humans directly, we used H215O positron-emission tomography to measure regional cerebral blood flow (rCBF) in young women during three pharmacologically controlled hormonal conditions spanning 4–5 months: ovarian suppression induced by the gonadotropin-releasing hormone agonist leuprolide acetate (Lupron), Lupron plus estradiol replacement, and Lupron plus progesterone replacement. Estradiol and progesterone were administered in a double-blind cross-over design. On each occasion positron-emission tomography scans were performed during (i) the Wisconsin Card Sorting Test, a neuropsychological test that physiologically activates prefrontal cortex (PFC) and an associated cortical network including inferior parietal lobule and posterior inferolateral temporal gyrus, and (ii) a no-delay matching-to-sample sensorimotor control task. During treatment with Lupron alone (i.e., with virtual absence of gonadal steroid hormones), there was marked attenuation of the typical Wisconsin Card Sorting Test activation pattern even though task performance did not change. Most strikingly, there was no rCBF increase in PFC. When either progesterone or estrogen was added to the Lupron regimen, there was normalization of the rCBF activation pattern with augmentation of the parietal and temporal foci and return of the dorsolateral PFC activation. These data directly demonstrate that the hormonal milieu modulates cognition-related neural activity in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We hypothesized that feeding pregnant rats with a high-fat diet would increase both circulating 17β-estradiol (E2) levels in the dams and the risk of developing carcinogen-induced mammary tumors among their female offspring. Pregnant rats were fed isocaloric diets containing 12% or 16% (low fat) or 43% or 46% (high fat) of calories from corn oil, which primarily contains the n − 6 polyunsaturated fatty acid (PUFA) linoleic acid, throughout pregnancy. The plasma concentrations of E2 were significantly higher in pregnant females fed a high n − 6 PUFA diet. The female offspring of these rats were fed with a laboratory chow from birth onward, and when exposed to 7,12-dimethylbenz(a)anthracene had a significantly higher mammary tumor incidence (60% vs. 30%) and shorter latency for tumor appearance (11.4 ± 0.5 weeks vs. 14.2 ± 0.6 weeks) than the offspring of the low-fat mothers. The high-fat offspring also had puberty onset at a younger age, and their mammary glands contained significantly higher numbers of the epithelial structures that are the targets for malignant transformation. Comparable changes in puberty onset, mammary gland morphology, and tumor incidence were observed in the offspring of rats treated daily with 20 ng of E2 during pregnancy. These data, if extrapolated to humans, may explain the link among diet, early puberty onset, mammary parenchymal patterns, and breast cancer risk, and indicate that an in utero exposure to a diet high in n − 6 PUFA and/or estrogenic stimuli may be critical for affecting breast cancer risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HIV infection often involves the development of AIDS-related dementia complex, a variety of neurologic, neuropsychologic, and neuropathologic impairments. A possible contributor to AIDS-related dementia complex is the HIV envelope glycoprotein gp120, which damages neurons via a complex glutamate receptor- and calcium-dependent cascade. We demonstrate an endocrine modulation of the deleterious effects of gp120 in primary hippocampal and cortical cultures. Specifically, we observe that gp120-induced calcium mobilization and neurotoxicity are exacerbated by glucocorticoids, the adrenal steroids secreted during stress. Importantly, this deleterious synergy can occur between gp120 and synthetic glucocorticoids (such as prednisone or dexamethasone) that are used clinically in high concentrations to treat severe cases of the Pneumocystis carinii pneumonia typical of HIV infection. Conversely, we also observe that estradiol protects neurons from the deleterious actions of gp120, reducing toxicity and calcium mobilization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel multispecific organic anion transporting polypeptide (oatp2) has been isolated from rat brain. The cloned cDNA contains 3,640 bp. The coding region extends over 1,983 nucleotides, thus encoding a polypeptide of 661 amino acids. Oatp2 is homologous to other members of the oatp gene family of membrane transporters with 12 predicted transmembrane domains, five potential glycosylation, and six potential protein kinase C phosphorylation sites. In functional expression studies in Xenopus laevis oocytes, oatp2 mediated uptake of the bile acids taurocholate (Km ≈ 35 μM) and cholate (Km ≈ 46 μM), the estrogen conjugates 17β-estradiol-glucuronide (Km ≈ 3 μM) and estrone-3-sulfate (Km ≈ 11 μM), and the cardiac gylcosides ouabain (Km ≈ 470 μM) and digoxin (Km ≈ 0.24 μM). Although most of the tested compounds are common substrates of several oatp-related transporters, high-affinity uptake of digoxin is a unique feature of the newly cloned oatp2. On the basis of Northern blot analysis under high-stringency conditions, oatp2 is highly expressed in brain, liver, and kidney but not in heart, spleen, lung, skeletal muscle, and testes. These results provide further support for the overall significance of oatps as a new family of multispecific organic anion transporters. They indicate that oatp2 may play an especially important role in the brain accumulation and toxicity of digoxin and in the hepatobiliary and renal excretion of cardiac glycosides from the body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer is a disease that begins with mutation of critical genes: oncogenes and tumor suppressor genes. Our research on carcinogenic aromatic hydrocarbons indicates that depurinating hydrocarbon–DNA adducts generate oncogenic mutations found in mouse skin papillomas (Proc. Natl. Acad. Sci. USA 92:10422, 1995). These mutations arise by mis-replication of unrepaired apurinic sites derived from the loss of depurinating adducts. This relationship led us to postulate that oxidation of the carcinogenic 4-hydroxy catechol estrogens (CE) of estrone (E1) and estradiol (E2) to catechol estrogen-3,4-quinones (CE-3, 4-Q) results in electrophilic intermediates that covalently bind to DNA to form depurinating adducts. The resultant apurinic sites in critical genes can generate mutations that may initiate various human cancers. The noncarcinogenic 2-hydroxy CE are oxidized to CE-2,3-Q and form only stable DNA adducts. As reported here, the CE-3,4-Q were bound to DNA in vitro to form the depurinating adduct 4-OHE1(E2)-1(α,β)-N7Gua at 59–213 μmol/mol DNA–phosphate whereas the level of stable adducts was 0.1 μmol/mol DNA–phosphate. In female Sprague–Dawley rats treated by intramammillary injection of E2-3,4-Q (200 nmol) at four mammary glands, the mammary tissue contained 2.3 μmol 4-OHE2-1(α,β)-N7Gua/molDNA–phosphate. When 4-OHE1(E2) were activated by horseradish peroxidase, lactoperoxidase, or cytochrome P450, 87–440 μmol of 4-OHE1(E2)-1(α, β)-N7Gua was formed. After treatment with 4-OHE2, rat mammary tissue contained 1.4 μmol of adduct/mol DNA–phosphate. In each case, the level of stable adducts was negligible. These results, complemented by other data, strongly support the hypothesis that CE-3,4-Q are endogenous tumor initiators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

These studies sought to determine if neurons in the estrogen receptor-α knockout (ERαKO) mouse brain concentrated 16α-[125I]iodo-11β-methoxy-17β-estradiol (125I-estrogen), and if so, whether estrogen binding augmented the expression of progesterone receptor (PR) mRNA. Mice were injected with 125I-estrogen and cryostat sections thaw mounted onto emulsion-coated slides. After 30–90 days of exposure, cells with a nuclear uptake and retention of 125I-estrogen were observed in a number of ERαKO mouse brain regions including the preoptic nucleus and arcuate nucleus of the hypothalamus, bed nucleus of the stria terminalis, and amygdala, although the number of labeled cells and intensity of nuclear concentration was markedly attenuated when compared with wild-type littermates. Competition studies with excess 17β-estradiol, diethylstilbestrol, or moxestrol, but not with R5020 or dihydrotestosterone, prevented the nuclear concentration of 125I-estrogen. To determine if the low level of estrogen binding was capable of regulating gene expression, in situ hybridization was used to evaluate PR mRNA in the brain. ERαKO and wild-type mice were ovariectomized and treated with vehicle or 17β-estradiol, and brains were sectioned and hybridized with a PR cRNA probe. Analysis of hybridization signal revealed a similar, low level of PR mRNA in ovariectomized wild-type and homozygous mice, and a marked increase in expression after treatment of ovariectomized animals with 17β-estradiol, with the level of hybridization signal being significantly higher in wild-type animals when compared with ERαKO mice. The results demonstrate that estrogen binds in the ERαKO brain and is capable of modulating PR gene expression, thus supporting the presence and functionality of a nonclassical estrogen receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estrogens are thought to regulate female reproductive functions by altering gene transcription in target organs primarily via the nuclear estrogen receptor-α (ER-α). By using ER-α “knock-out” (ERKO) mice, we demonstrate herein that a catecholestrogen, 4-hydroxyestradiol-17β (4-OH-E2), and an environmental estrogen, chlordecone (kepone), up-regulate the uterine expression of an estrogen-responsive gene, lactoferrin (LF), independent of ER-α. A primary estrogen, estradiol-17β (E2), did not induce this LF response. An estrogen receptor antagonist, ICI-182,780, or E2 failed to inhibit uterine LF gene expression induced by 4-OH-E2 or kepone in ERKO mice, which suggests that this estrogen signaling pathway is independent of both ER-α and the recently cloned ER-β. 4-OH-E2, but not E2, also stimulated increases in uterine water imbibition and macromolecule uptake in ovariectomized ERKO mice. The results strongly imply the presence of a distinct estrogen-signaling pathway in the mouse uterus that mediates the effects of both physiological and environmental estrogens. This estrogen response pathway will have profound implications for our understanding of the physiology and pathophysiology of female sex steroid hormone actions in target organs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steroids produced locally in brain (neurosteroids), including dehydroepiandrosterone (DHEA), influence cognition and behavior. We previously described a novel cytochrome P450, Cyp7b, strongly expressed in rat and mouse brain, particularly in hippocampus. Cyp7b is most similar to steroidogenic P450s and potentially could play a role in neurosteroid metabolism. To examine the catalytic activity of the enzyme mouse Cyp7b cDNA was introduced into a vaccinia virus vector. Extracts from cells infected with the recombinant showed NADPH-dependent conversion of DHEA (Km, 13.6 μM) and pregnenolone (Km, 4.0 μM) to slower migrating forms on thin layer chromatography. The expressed enzyme was less active against 25-hydroxycholesterol, 17β-estradiol and 5α-androstane-3β,17β-diol, with low to undetectable activity against progesterone, corticosterone, and testosterone. On gas chromatography and mass spectrometry of the Cyp7b metabolite of DHEA the retention time and fragmentation patterns were identical to those obtained with authentic 7α-hydroxy DHEA. The reaction product also comigrated on thin layer chromatography with 7α-hydroxy DHEA but not with 7β-hydroxy DHEA; when [7α-3H]pregnenolone was incubated with Cyp7b extracts the extent of release of radioactivity into the medium suggested that hydroxylation was preferentially at the 7α position. Brain extracts also efficiently liberated tritium from [7α-3H]pregnenolone and converted DHEA to a product with a chromatographic mobility indistinguishable from 7α-hydroxy DHEA. We conclude that Cyp7b is a 7α-hydroxylase participating in the synthesis, in brain, of neurosteroids 7α-hydroxy DHEA, and 7α-hydroxy pregnenolone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protective effects of estrogen in the cardiovascular system result from both systemic effects and direct actions of the hormone on the vasculature. Two estrogen receptors have been identified, ERα and ERβ. We demonstrated previously that estrogen inhibits the response to vascular injury in both wild-type and ERα-deficient mice, and that ERβ is expressed in the blood vessels of each, suggesting a role for ERβ in the vascular protective effects of estrogen. In the present study, we examined the effect of estrogen administration on mouse carotid arterial injury in ERβ-deficient mice. Surprisingly, in ovariectomized female wild-type and ERβ knockout mice, 17β-estradiol markedly and equally inhibited the increase in vascular medial area and the proliferation of vascular smooth muscle cells after vascular injury. These data demonstrate that ERβ is not required for estrogen-mediated inhibition of the response to vascular injury, and suggest that either of the two known estrogen receptors is sufficient to protect against vascular injury, or that another unidentified estrogen receptor mediates the vascular protective effects of estrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estrogen has been implicated in brain functions related to affective state, including hormone-related affective disorders in women. Although some reports suggest that estrogen appears to decrease vulnerability to affective disorders in certain cases, the mechanisms involved are unknown. We used the forced swim test (FST), a paradigm used to test the efficacy of antidepressants, and addressed the hypotheses that estrogen alters behavior of ovariectomized rats in the FST and the FST-induced expression of c-fos, a marker for neuronal activity, in the rat forebrain. The behaviors displayed included struggling, swimming, and immobility. One hour after the beginning of the test on day 2, the animals were perfused, and the brains were processed for c-fos immunocytochemistry. On day 1, the estradiol benzoate-treated animals spent significantly less time struggling and virtually no time in immobility and spent most of the time swimming. Control rats spent significantly more time struggling or being immobile during a comparable period. On day 2, similar behavioral patterns with still more pronounced differences were observed between estradiol benzoate and ovariectomized control groups in struggling, immobility, and swimming. Analysis of the mean number of c-fos immunoreactive cell nuclei showed a significant reduction in the estradiol benzoate versus control groups in areas of the forebrain relating to sensory, contextual, and integrative processing. Our results suggest that estrogen-induced neurochemical changes in forebrain neurons may translate into an altered behavioral output in the affective domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activation of the silent endogenous progesterone receptor (PR) gene by 17-β-estradiol (E2) in cells stably transfected with estrogen receptor (ER) was used as a model system to study the mechanism of E2-induced transcription. The time course of E2-induced PR transcription rate was determined by nuclear run-on assays. No marked effect on specific PR gene transcription rates was detected at 0 and 1 h of E2 treatment. After 3 h of E2 treatment, the PR mRNA synthesis rate increased 2.0- ± 0.2-fold and continued to increase to 3.5- ± 0.4-fold by 24 h as compared with 0 h. The transcription rate increase was followed by PR mRNA accumulation. No PR mRNA was detectable at 0, 1, and 3 h of E2 treatment. PR mRNA accumulation was detected at 6 h of E2 treatment and continued to accumulate until 18 h, the longest time point examined. Interestingly, this slow and gradual transcription rate increase of the endogenous PR gene did not parallel binding of E2 to ER, which was maximized within 30 min. Furthermore, the E2–ER level was down-regulated to 15% at 3 h as compared with 30 min of E2 treatment and remained low at 24 h of E2 exposure. These paradoxical observations indicate that E2-induced transcription activation is more complicated than just an association of the occupied ER with the transcription machinery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In eukaryotic cells, the ubiquitin–proteasome pathway is the major mechanism for the targeted degradation of proteins with short half-lives. The covalent attachment of ubiquitin to lysine residues of targeted proteins is a signal for the recognition and rapid degradation by the proteasome, a large multi-subunit protease. In this report, we demonstrate that the human estrogen receptor (ER) protein is rapidly degraded in mammalian cells in an estradiol-dependent manner. The treatment of mammalian cells with the proteasome inhibitor MG132 inhibits activity of the proteasome and blocks ER degradation, suggesting that ER protein is turned over through the ubiquitin–proteasome pathway. In addition, we show that in vitro ER degradation depends on ubiquitin-activating E1 enzyme (UBA) and ubiquitin-conjugating E2 enzymes (UBCs), and the proteasome inhibitors MG132 and lactacystin block ER protein degradation in vitro. Furthermore, the UBA/UBCs and proteasome inhibitors promote the accumulation of higher molecular weight forms of ER. The UBA and UBCs, which promote ER degradation in vitro, have no significant effect on human progesterone receptor and human thyroid hormone receptor β proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Full term pregnancy early in life is the most effective natural protection against breast cancer in women. Rats treated with chemical carcinogen are similarly protected by a previous pregnancy from mammary carcinogenesis. Proliferation and differentiation of the mammary gland does not explain this phenomenon, as shown by the relative ineffectiveness of perphenazine, a potent mitogenic and differentiating agent. Here, we show that short term treatment of nulliparous rats with pregnancy levels of estradiol 17β and progesterone has high efficacy in protecting them from chemical carcinogen induced mammary cancers. Because the mammary gland is exposed to the highest physiological concentrations of estradiol and progesterone during full term pregnancy, it is these elevated levels of hormones that likely induce protection from mammary cancer. Thus, it appears possible to mimic the protective effects of pregnancy against breast cancer in nulliparous rats by short term specific hormonal intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was undertaken to determine the modulation of uterine function by chorionic gonadotrophin (CG) in a nonhuman primate. Infusion of recombinant human CG (hCG) between days 6 and 10 post ovulation initiated the endoreplication of the uterine surface epithelium to form distinct epithelial plaques. These plaque cells stained intensely for cytokeratin and the proliferating cell nuclear antigen. The stromal fibroblasts below the epithelial plaques stained positively for α-smooth muscle actin (αSMA). Expression of αSMA is associated with the initiation of decidualization in the baboon endometrium. Synthesis of the glandular secretory protein glycodelin, as assessed by Western blot analysis, was markedly up-regulated by hCG, and this increase was confirmed by immunocytochemistry, Northern blot analysis, and reverse transcriptase-PCR. To determine whether hCG directly modulated these uterine responses, we treated ovariectomized baboons sequentially with estradiol and progesterone to mimic the hormonal profile of the normal menstrual cycle. Infusion of hCG into the oviduct of steroid-hormone-treated ovariectomized baboons induced the expression of αSMA in the stromal cells and glycodelin in the glandular epithelium. The epithelial plaque reaction, however, was not readily evident. These studies demonstrate a physiological effect of CG on the uterine endometrium in vivo and suggest that the primate blastocyst signal, like the blastocyst signals of other species, modulates the uterine environment prior to implantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes three distinct estrogen receptor (ER) subtypes: ERα, ERβ, and a unique type, ERγ, cloned from a teleost fish, the Atlantic croaker Micropogonias undulatus; the first identification of a third type of classical ER in vertebrate species. Phylogenetic analysis shows that ERγ arose through gene duplication from ERβ early in the teleost lineage and indicates that ERγ is present in other teleosts, although it has not been recognized as such. The Atlantic croaker ERγ shows amino acid differences in regions important for ligand binding and receptor activation that are conserved in all other ERγs. The three ER subtypes are genetically distinct and have different distribution patterns in Atlantic croaker tissues. In addition, ERβ and ERγ fusion proteins can each bind estradiol-17β with high affinity. The presence of three functional ERs in one species expands the role of ER multiplicity in estrogen signaling systems and provides a unique opportunity to investigate the dynamics and mechanisms of ER evolution.