150 resultados para endotoxin, Escherichia coli
Resumo:
The RNA phage Qβ requires for the replication of its genome an RNA binding protein called Qβ host factor or Hfq protein. Our previous results suggested that this protein mediates the access of replicase to the 3′-end of the Qβ plus strand RNA. Here we report the results of an evolutionary experiment in which phage Qβ was adapted to an Escherichia coli Q13 host strain with an inactivated host factor (hfq) gene. This strain initially produced phage at a titer ≈10,000-fold lower than the wild-type strain and with minute plaque morphology, but after 12 growth cycles, phage titer and plaque size had evolved to levels near those of the wild-type host. RNAs isolated from adapted Qβ mutants were efficient templates for replicase without host factor in vitro. Electron microscopy showed that mutant RNAs, in contrast to wild-type RNA, efficiently interacted with replicase at the 3′-end in the absence of host factor. The same set of four mutations in the 3′-terminal third of the genome was found in several independently evolved phage clones. One mutation disrupts the base pairing of the 3′-terminal CCCoh sequence, suggesting that the host factor stimulates activity of the wild-type RNA template by melting out its 3′-end.
Resumo:
We identified a protein, Aer, as a signal transducer that senses intracellular energy levels rather than the external environment and that transduces signals for aerotaxis (taxis to oxygen) and other energy-dependent behavioral responses in Escherichia coli. Domains in Aer are similar to the signaling domain in chemotaxis receptors and the putative oxygen-sensing domain of some transcriptional activators. A putative FAD-binding site in the N-terminal domain of Aer shares a consensus sequence with the NifL, Bat, and Wc-1 signal-transducing proteins that regulate gene expression in response to redox changes, oxygen, and blue light, respectively. A double mutant deficient in aer and tsr, which codes for the serine chemoreceptor, was negative for aerotaxis, redox taxis, and glycerol taxis, each of which requires the proton motive force and/or electron transport system for signaling. We propose that Aer and Tsr sense the proton motive force or cellular redox state and thereby integrate diverse signals that guide E. coli to environments where maximal energy is available for growth.
Resumo:
We report evidence for proton-driven subunit rotation in membrane-bound FoF1–ATP synthase during oxidative phosphorylation. A βD380C/γC87 crosslinked hybrid F1 having epitope-tagged βD380C subunits (βflag) exclusively in the two noncrosslinked positions was bound to Fo in F1-depleted membranes. After reduction of the β–γ crosslink, a brief exposure to conditions for ATP synthesis followed by reoxidation resulted in a significant amount of βflag appearing in the β–γ crosslinked product. Such a reorientation of γC87 relative to the three β subunits can only occur through subunit rotation. Rotation was inhibited when proton transport through Fo was blocked or when ADP and Pi were omitted. These results establish FoF1 as the second example in nature where proton transport is coupled to subunit rotation.
Resumo:
Targeting of many secretory and membrane proteins to the inner membrane in Escherichia coli is achieved by the signal recognition particle (SRP) and its receptor (FtsY). In E. coli SRP consists of only one polypeptide (Ffh), and a 4.5S RNA. Ffh and FtsY each contain a conserved GTPase domain (G domain) with an α-helical domain on its N terminus (N domain). The nucleotide binding kinetics of the NG domain of the SRP receptor FtsY have been investigated, using different fluorescence techniques. Methods to describe the reaction kinetically are presented. The kinetics of interaction of FtsY with guanine nucleotides are quantitatively different from those of other GTPases. The intrinsic guanine nucleotide dissociation rates of FtsY are about 105 times higher than in Ras, but similar to those seen in GTPases in the presence of an exchange factor. Therefore, the data presented here show that the NG domain of FtsY resembles a GTPase–nucleotide exchange factor complex not only in its structure but also kinetically. The I-box, an insertion present in all SRP-type GTPases, is likely to act as an intrinsic exchange factor. From this we conclude that the details of the GTPase cycle of FtsY and presumably other SRP-type GTPases are fundamentally different from those of other GTPases.
Resumo:
A gene encoding the rice 16.9-kDa class I low-molecular-mass (LMM) heat-shock protein (HSP), Oshsp16.9, was introduced into Escherichia coli using the pGEX-2T expression vector to analyze the possible function of this LMM HSP under heat stress. It is known that E. coli does not normally produce class I LMM HSPs. We compared the survivability of E. coli XL1-Blue cells transformed with a recombinant plasmid containing a glutathione S-transferase (GST)–Oshsp16.9 fusion protein (pGST-FL cells) with the control E. coli cells transformed with the pGEX-2T vector (pGST cells) under heat-shock (HS) after isopropyl β-d-thiogalactopyranoside induction. The pGST-FL cells demonstrated thermotolerance at 47.5°C, a treatment that was lethal to the pGST cells. When the cell lysates from these two E. coli transformants were heated at 55°C, the amount of protein denatured in the pGST-FL cells was 50% less than that of the pGST cells. Similar results as pGST-FL cells were obtained in pGST-N78 cells (cells produced a fusion protein with only the N-terminal 78 aa in the Oshsp16.9 portion) but not in pGST-C108 cells (cells produced a fusion protein with C-terminal 108 aa in the Oshsp16.9 portion). The acquired thermotolerant pGST-FL cells synthesized three types of HSPs, including the 76-, 73-, and 64-kDa proteins according to their abundance at a lethal temperature of 47.5°C. This finding indicates that a plant class I LMM HSP, when effectively expressed in transformed prokaryotic cells that do not normally synthesize this class of LMM HSPs, may directly or indirectly increase thermotolerance.
Resumo:
DsbA, the disulfide bond catalyst of Escherichia coli, is a periplasmic protein having a thioredoxin-like Cys-30-Xaa-Xaa-Cys-33 motif. The Cys-30–Cys-33 disulfide is donated to a pair of cysteines on the target proteins. Although DsbA, having high oxidizing potential, is prone to reduction, it is maintained essentially all oxidized in vivo. DsbB, an integral membrane protein having two pairs of essential cysteines, reoxidizes DsbA that has been reduced upon functioning. It is not known, however, what might provide the overall oxidizing power to the DsbA–DsbB disulfide bond formation system. We now report that E. coli mutants defective in the hemA gene or in the ubiA-menA genes markedly accumulate the reduced form of DsbA during growth under the conditions of protoheme deprivation as well as ubiquinone/menaquinone deprivation. Disulfide bond formation of β-lactamase was impaired under these conditions. Intracellular state of DsbB was found to be affected by deprivation of quinones, such that it accumulates first as a reduced form and then as a form of a disulfide-linked complex with DsbA. This is followed by reduction of the bulk of DsbA molecules. These results suggest that the respiratory electron transfer chain participates in the oxidation of DsbA, by acting primarily on DsbB. It is remarkable that a cellular catalyst of protein folding is connected to the respiratory chain.
Resumo:
Peptide nucleic acids (PNA) are mimics with normal bases connected to a pseudopeptide chain that obey Watson–Crick rules to form stable duplexes with itself and natural nucleic acids. This has focused attention on PNA as therapeutic or diagnostic reagents. Duplexes formed with PNA mirror some but not all properties of DNA. One fascinating aspect of PNA biochemistry is their reaction with enzymes. Here we show an enzyme reaction that operates effectively on a PNA/DNA hybrid duplex. A DNA oligonucleotide containing a cis, syn-thymine [2+2] dimer forms a stable duplex with PNA. The hybrid duplex is recognized by photolyase, and irradiation of the complex leads to the repair of the thymine dimer. This finding provides insight into the enzyme mechanism and provides a means for the selective repair of thymine photodimers.
Resumo:
Multilocus-genotyping methods have shown that Escherichia coli O157:H7 is a geographically disseminated clone. However, high-resolution methods such as pulse-field gel electrophoresis demonstrate significant genomic diversity among different isolates. To assess the genetic relationship of human and bovine isolates of E. coli O157:H7 in detail, we have developed an octamer-based genome-scanning methodology, which compares the distance between over-represented, strand-biased octamers that occur in the genome. Comparison of octamer-based genome-scanning products derived from >1 megabase of the genome demonstrated the existence of two distinct lineages of E. coli O157:H7 that are disseminated within the United States. Human and bovine isolates are nonrandomly distributed among the lineages, suggesting that one of these lineages may be less virulent for humans or may not be efficiently transmitted to humans from bovine sources. Restriction fragment length polymorphism analysis with lambdoid phage genomes indicates that phage-mediated events are associated with divergence of the lineages, thereby providing one explanation for the degree of diversity that is observed among E. coli O157:H7 by other molecular-fingerprinting methods.
Resumo:
The primase DnaG of Escherichia coli requires the participation of the replicative helicase DnaB for optimal synthesis of primer RNA for lagging strand replication. However, previous studies had not determined whether the activation of the primase or its loading on the template was accomplished by a helicase-mediated structural alteration of the single-stranded DNA or by a direct physical interaction between the DnaB and the DnaG proteins. In this paper we present evidence supporting direct interaction between the two proteins. We have mapped the surfaces of interaction on both DnaG and DnaB and show further that mutations that reduce the physical interaction also cause a significant reduction in primer synthesis. Thus, the physical interaction reported here appears to be physiologically significant.
Resumo:
Using a novel Escherichia coli in vitro decay system in which polysomes are the source of both enzymes and mRNA, we demonstrate a requirement for poly(A) polymerase I (PAP I) in mRNA turnover. The in vitro decay of two different mRNAs (trxA and lpp) is triggered by the addition of ATP only when polysomes are prepared from a strain carrying the wild-type gene for PAP I (pcnB+). The relative decay rates of these two messages are similar in vitro and in vivo. Poly(A) tails are formed on both mRNAs, but no poly(A) tails are detected on the 3′ end of mature 23S rRNA. The size distribution of poly(A) tails generated in vitro, averaging 50 nt in length, is comparable to that previously reported in vivo. PAP I activity is associated exclusively with the polysomes. Exogenously added PAP I does not restore mRNA decay to PAP I− polysomes, suggesting that, in vivo, PAP I may be part of a multiprotein complex. The potential of this in vitro system for analyzing mRNA decay in E. coli is discussed.
Resumo:
In the current model for bacterial cell division, FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other proteins such as FtsA. This putative protein complex ultimately generates the division septum. Herein we report that FtsZ and FtsA proteins tagged with green fluorescent protein (GFP) colocalize to division-site ring-like structures in living bacterial cells in a visible space between the segregated nucleoids. Cells with higher levels of FtsZ–GFP or with FtsA–GFP plus excess wild-type FtsZ were inhibited for cell division and often exhibited bright fluorescent spiral tubules that spanned the length of the filamentous cells. This suggests that FtsZ may switch from a septation-competent localized ring to an unlocalized spiral under some conditions and that FtsA can bind to FtsZ in both conformations. FtsZ–GFP also formed nonproductive but localized aggregates at a higher concentration that could represent FtsZ nucleation sites. The general domain structure of FtsZ–GFP resembles that of tubulin, since the C terminus of FtsZ is not required for polymerization but may regulate polymerization state. The N-terminal portion of Rhizobium FtsZ polymerized in Escherichia coli and appeared to copolymerize with E. coli FtsZ, suggesting a degree of interspecies functional conservation. Analysis of several deletions of FtsA–GFP suggests that multiple segments of FtsA are important for its localization to the FtsZ ring.
Resumo:
Biochemical studies have shown that the periplasmic protein disulfide oxidoreductase DsbC can isomerize aberrant disulfide bonds. Here we present the first evidence for an in vivo role of DsbC in disulfide bond isomerization. Furthermore, our data suggest that the enzymes DsbA and DsbC play distinct roles in the cell in disulfide bond formation and isomerization, respectively. We have shown that mutants in dsbC display a defect in disulfide bond formation specific for proteins with multiple disulfide bonds. The defect can be complemented by the addition of reduced dithiothreitol to the medium, suggesting that absence of DsbC results in accumulation of misoxidized proteins. Mutations in the dipZ and trxA genes have similar phenotypes. We propose that DipZ, a cytoplasmic membrane protein with a thioredoxin-like domain, and thioredoxin, the product of the trxA gene, are components of a pathway for maintaining DsbC active as a protein disulfide bond isomerase.
Resumo:
Three different cDNAs, Prh-19, Prh-26, and Prh-43 [3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase homolog], have been isolated by complementation of an Escherichia coli cysH mutant, defective in PAPS reductase activity, to prototrophy with an Arabidopsis thaliana cDNA library in the expression vector λYES. Sequence analysis of the cDNAs revealed continuous open reading frames encoding polypeptides of 465, 458, and 453 amino acids, with calculated molecular masses of 51.3, 50.5, and 50.4 kDa, respectively, that have strong homology with fungal, yeast, and bacterial PAPS reductases. However, unlike microbial PAPS reductases, each PRH protein has an N-terminal extension, characteristic of a plastid transit peptide, and a C-terminal extension that has amino acid and deduced three-dimensional homology to thioredoxin proteins. Adenosine 5′-phosphosulfate (APS) was shown to be a much more efficient substrate than PAPS when the activity of the PRH proteins was tested by their ability to convert 35S-labeled substrate to acid-volatile 35S-sulfite. We speculate that the thioredoxin-like domain is involved in catalytic function, and that the PRH proteins may function as novel “APS reductase” enzymes. Southern hybridization analysis showed the presence of a small multigene family in the Arabidopsis genome. RNA blot hybridization with gene-specific probes revealed for each gene the presence of a transcript of ≈1.85 kb in leaves, stems, and roots that increased on sulfate starvation. To our knowledge, this is the first report of the cloning and characterization of plant genes that encode proteins with APS reductase activity and supports the suggestion that APS can be utilized directly, without activation to PAPS, as an intermediary substrate in reductive sulfate assimilation.
Resumo:
The F1 part of the F1FO ATP synthase from Escherichia coli has been crystallized and its structure determined to 4.4-Å resolution by using molecular replacement based on the structure of the beef-heart mitochondrial enzyme. The bacterial F1 consists of five subunits with stoichiometry α3, β3, γ, δ, and ɛ. δ was removed before crystallization. In agreement with the structure of the beef-heart mitochondrial enzyme, although not that from rat liver, the present study suggests that the α and β subunits are arranged in a hexagonal barrel but depart from exact 3-fold symmetry. In the structures of both beef heart and rat-liver mitochondrial F1, less than half of the structure of the γ subunit was seen because of presumed disorder in the crystals. The present electron-density map includes a number of rod-shaped features which appear to correspond to additional α-helical regions within the γ subunit. These suggest that the γ subunit traverses the full length of the stalk that links the F1 and FO parts and makes significant contacts with the c subunit ring of FO.
Resumo:
Under physiological conditions, the Escherichia coli cytoplasm is maintained in a reduced state that strongly disfavors the formation of stable disulfide bonds in proteins. However, mutants in which the reduction of both thioredoxins and glutathione is impaired (trxB gor mutants) accumulate oxidized, enzymatically active alkaline phosphatase in the cytoplasm. These mutants grow very poorly in the absence of an exogenous reductant and accumulate extragenic suppressors at a high frequency. One such suppressor strain, FA113, grows almost as rapidly as the wild type in the absence of reductant, exhibits slightly faster kinetics of disulfide bond formation, and has fully induced activity of the transcriptional activator, OxyR. FA113 gave substantially higher yields of properly oxidized proteins compared with wild-type or trxB mutant strains. For polypeptides with very complex patterns of disulfide bonds, such as vtPA and the full-length tPA, the amount of active protein was further enhanced up to 15-fold by co-expression of TrxA (thioredoxin 1) mutants with different redox potentials, or 20-fold by the protein disulfide isomerase, DsbC. Remarkably, higher yields of oxidized, biologically active proteins were obtained by expression in the cytoplasm of E. coli FA113 compared with what could be achieved via secretion into the periplasm of a wild-type strain, even under optimized conditions. These results demonstrate that the cytoplasm can be rendered sufficiently oxidizing to allow efficient formation of native disulfide bonds without compromising cell viability.