34 resultados para enamel matrix proteins


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trichomonads are among the earliest eukaryotes to diverge from the main line of eukaryotic descent. Keeping with their ancient nature, these facultative anaerobic protists lack two "hallmark" organelles found in most eukaryotes: mitochondria and peroxisomes. Trichomonads do, however, contain an unusual organelle involved in carbohydrate metabolism called the hydrogenosome. Like mitochondria, hydrogenosomes are double-membrane bounded organelles that produce ATP using pyruvate as the primary substrate. Hydrogenosomes are, however, markedly different from mitochondria as they lack DNA, cytochromes and the citric acid cycle. Instead, they contain enzymes typically found in anaerobic bacteria and are capable of producing molecular hydrogen. We show here that hydrogenosomes contain heat shock proteins, Hsp70, Hsp60, and Hsp10, with signature sequences that are conserved only in mitochondrial and alpha-Gram-negative purple bacterial Hsps. Biochemical analysis of hydrogenosomal Hsp60 shows that the mature protein isolated from the organelle lacks a short, N-terminal sequence, similar to that observed for most nuclear-encoded mitochondrial matrix proteins. Moreover, phylogenetic analyses of hydrogenosomal Hsp70, Hsp60, and Hsp10 show that these proteins branch within a monophyletic group composed exclusively of mitochondrial homologues. These data establish that mitochondria and hydrogenosomes have a common eubacterial ancestor and imply that the earliest-branching eukaryotes contained the endosymbiont that gave rise to mitochondria in higher eukaryotes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is believed that the polymorphism observed in calcium carbonate crystals, such as aragonite and calcite in mollusk shells, is controlled by organic matrix proteins secreted from the mantle epithelia. However, the fine structures of these proteins are still unknown, and to understand the molecular mechanisms of mineralization process, detailed structural analyses of the organic matrix proteins are essential. For this, we have carried out purification, characterization, and cDNA cloning of nacrein, which is a soluble organic matrix protein in the nacreous layer of oyster pearls. Northern blot analysis showed that the nacrein transcript was specifically expressed in mantle pallial. Analysis of the deduced amino acid sequence revealed that the protein contained two functional domains: one was a carbonic anhydrase and another was a Gly-Xaa-Asn (Xaa = Asp, Asn, or Glu) repeat domain; however, the carbonic anhydrase domain was split into two subdomains with insertion of the Gly-Xaa-Asn repeat domain between them. Our findings suggest that nacrein actually functions as a matrix protein whose repeated Gly-Xaa-Asn domain possibly binds calcium and as a carbonic anhydrase that catalyzes the HCO3- formation, thus participating in calcium carbonate crystal formation of the nacreous layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Certain matrix metalloproteinases (MMP) are expressed within the fibrous areas surrounding acellular lipid cores of atherosclerotic plaques, suggesting that these proteinases degrade matrix proteins within these areas and weaken the structural integrity of the lesion. We report that matrilysin and macrophage metalloelastase, two broad-acting MMPs, were expressed in human atherosclerotic lesions in carotid endarterectomy samples (n = 18) but were not expressed in normal arteries (n = 7). In situ hybridization and immunohistochemistry revealed prominent expression of matrilysin in cells confined to the border between acellular lipid cores and overlying fibrous areas, a distribution distinct from other MMPs found in similar lesions. Metalloelastase was expressed in these same border areas. Matrilysin was present in lipid-laden macrophages, identified by staining with anti-CD-68 antibody. Furthermore, endarterectomy tissue in organ culture released matrilysin. Staining for versican demonstrated that this vascular proteoglycan was present at sites of matrilysin expression. Biochemical studies showed that matrilysin degraded versican much more efficiently than other MMPs present in atherosclerotic lesions. Our findings suggest that matrilysin, specifically expressed in atherosclerotic lesions, could cleave structural proteoglycans and other matrix components, potentially leading to separation of caps and shoulders from lipid cores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial adhesion to other bacteria, to eukaryotic cells, and to extracellular matrix proteins is frequently mediated by cell surface-associated polymers (fimbriae) consisting of one or more subunit proteins. We have found that polymerization of curlin to fimbriae-like structures (curli) on the surface of Escherichia coli markedly differs from the prevailing model for fimbrial assembly in that it occurs extracellularly through a self-assembly process depending on a specific nucleator protein. The cell surface-bound nucleator primes the polymerization of curlin secreted by the nucleator-presenting cell or by adjacent cells. The addition of monomers to the growing filament seems to be driven by mass action and guided only by the diffusion gradient between the source of secreted monomer and the surface of monomer condensation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As a step toward understanding their functional role, the low frequency vibrational motions (<300 cm−1) that are coupled to optical excitation of the primary donor bacteriochlorophyll cofactors in the reaction center from Rhodobacter sphaeroides were investigated. The pattern of hydrogen-bonding interaction between these bacteriochlorophylls and the surrounding protein was altered in several ways by mutation of single amino acids. The spectrum of low frequency vibrational modes identified by femtosecond coherence spectroscopy varied strongly between the different reaction center complexes, including between different mutants where the pattern of hydrogen bonds was the same. It is argued that these variations are primarily due to changes in the nature of the individual modes, rather than to changes in the charge distribution in the electronic states involved in the optical excitation. Pronounced effects of point mutations on the low frequency vibrational modes active in a protein-cofactor system have not been reported previously. The changes in frequency observed indicate a strong involvement of the protein in these nuclear motions and demonstrate that the protein matrix can increase or decrease the fluctuations of the cofactor along specific directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The G protein-coupled m1 and m3 muscarinic acetylcholine receptors increase tyrosine phosphorylation of several proteins, including the focal adhesion-associated proteins paxillin and focal adhesion kinase (FAK), but the mechanism is not understood. Activation of integrins during adhesion of cells to extracellular matrix, or stimulation of quiescent cell monolayers with G protein-coupled receptor ligands including bradykinin, bombesin, endothelin, vasopressin, and lysophosphatidic acid, also induces tyrosine phosphorylation of paxillin and FAK and formation of focal adhesions. These effects are generally independent of protein kinase C but are inhibited by agents that prevent cytoskeletal assembly or block activation of the small molecular weight G protein Rho. This report demonstrates that tyrosine phosphorylation of paxillin and FAK elicited by stimulation of muscarinic m3 receptors with the acetylcholine analog carbachol is inhibited by soluble peptides containing the arginine–glycine–aspartate motif (the recognition site for integrins found in adhesion proteins such as fibronectin) but is unaffected by peptides containing the inactive sequence arginine–glycine–glutamate. Tyrosine phosphorylation elicited by carbachol, but not by cell adhesion to fibronectin, is reduced by the protein kinase C inhibitor GF 109203X. The response to carbachol is dependent on the presence of fibronectin. Moreover, immunofluorescence studies show that carbachol treatment induces formation of stress fibers and focal adhesions. These results suggest that muscarinic receptor stimulation activates integrins via a protein kinase C-dependent mechanism. The activated integrins transmit a signal into the cell’s interior leading to tyrosine phosphorylation of paxillin and FAK. This represents a novel mechanism for regulation of tyrosine phosphorylation by muscarinic receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many cellular events depend on a tightly compartmentalized distribution of H+ ions across membrane-bound organelles. However, measurements of organelle pH in living cells have been scarce. Several mutants of the Aequorea victoria green fluorescent protein (GFP) displayed a pH-dependent absorbance and fluorescent emission, with apparent pKa values ranging from 6.15 (mutations F64L/S65T/H231L) and 6.4 (K26R/F64L/S65T/Y66W/N146I/M153T/V163A/N164H/H231L) to a remarkable 7.1 (S65G/S72A/T203Y/H231L). We have targeted these GFPs to the cytosol plus nucleus, the medial/trans-Golgi by fusion with galactosyltransferase, and the mitochondrial matrix by using the targeting signal from subunit IV of cytochrome c oxidase. Cells in culture transfected with these cDNAs displayed the expected subcellular localization by light and electron microscopy and reported local pH that was calibrated in situ with ionophores. We monitored cytosolic and nuclear pH of HeLa cells, and mitochondrial matrix pH in HeLa cells and in rat neonatal cardiomyocytes. The pH of the medial/trans-Golgi was measured at steady-state (calibrated to be 6.58 in HeLa cells) and after various manipulations. These demonstrated that the Golgi membrane in intact cells is relatively permeable to H+, and that Cl− serves as a counter-ion for H+ transport and likely helps to maintain electroneutrality. The amenability to engineer GFPs to specific subcellular locations or tissue targets using gene fusion and transfer techniques should allow us to examine pH at sites previously inaccessible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cell-mediated assembly of fibronectin (Fn) into fibrillar matrices is a complex multistep process that is incompletely understood because of the chemical complexity of the extracellular matrix and a lack of experimental control over molecular interactions and dynamic events. We have identified conditions under which Fn assembles into extended fibrillar networks after adsorption to a dipalmitoyl phosphatidylcholine (DPPC) monolayer in contact with physiological buffer. We propose a sequential model for the Fn assembly pathway, which involves the orientation of Fn underneath the lipid monolayer by insertion into the liquid expanded (LE) phase of DPPC. Attractive interactions between these surface-anchored proteins and the liquid condensed (LC) domains leads to Fn enrichment at domain edges. Spontaneous self-assembly into fibrillar networks, however, occurs only after expansion of the DPPC monolayer from the LC phase though the LC/LE phase coexistence. Upon monolayer expansion, the domain boundaries move apart while attractive interactions among Fn molecules and between Fn and domain edges produce a tensile force on the proteins that initiates fibril assembly. The resulting fibrils have been characterized in situ by using fluorescence and light-scattering microscopy. We have found striking similarities between fibrils produced under DPPC monolayers and those found on cellular surfaces, including their assembly pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Import of tRNA into the mitochondrial matrix of Trypanosoma brucei was reconstituted in vitro. Efficient import required the hydrolysis of externally added ATP and was shown to be a carrier-mediated process depending on proteinaceous receptors on the surface of mitochondria. A partly synthetic tRNATyr as well as a physiological tRNALys were imported along the same pathway. Contrary to import of all matrix-localized proteins, tRNA import does not require a membrane potential. Furthermore, addition of an excess of import-competent tRNA had no effect on import of a mitochondrial matrix protein. In summary, these results show that tRNAs and proteins in T. brucei are imported by fundamentally different mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amphipols are a new class of surfactants that make it possible to handle membrane proteins in detergent-free aqueous solution as though they were soluble proteins. The strongly hydrophilic backbone of these polymers is grafted with hydrophobic chains, making them amphiphilic. Amphipols are able to stabilize in aqueous solution under their native state four well-characterized integral membrane proteins: (i) bacteriorhodopsin, (ii) a bacterial photosynthetic reaction center, (iii) cytochrome b6f, and (iv) matrix porin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to sense orientation relative to gravity requires dense particles, called otoconia, which are localized in the vestibular macular organs. In mammals, otoconia are composed of proteins (otoconins) and calcium carbonate crystals in a calcite lattice. Little is known about the mechanisms that regulate otoconial biosynthesis. To begin to elucidate these mechanisms, we have partially sequenced and cloned the major protein component of murine otoconia, otoconin-90 (OC90). The amino acid sequence identified an orphan chimeric human cDNA. Because of its similarity to secretory phospholipase A2 (sPLA2), this gene was referred to as PLA2-like (PLA2L) and enabled the identification of human Oc90. Partial murine cDNA and genomic clones were isolated and shown to be specifically expressed in the developing mouse otocyst. The mature mouse OC90 is composed of 453 residues and contains two domains homologous to sPLA2. The cloning of Oc90 will allow an examination of the role of this protein in otoconial biosynthesis and in diseases that affect the vestibular system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The type IIA rat brain sodium channel is composed of three subunits: a large pore-forming α subunit and two smaller auxiliary subunits, β1 and β2. The β subunits are single membrane-spanning glycoproteins with one Ig-like motif in their extracellular domains. The Ig motif of the β2 subunit has close structural similarity to one of the six Ig motifs in the extracellular domain of the cell adhesion molecule contactin (also called F3 or F11), which binds to the extracellular matrix molecules tenascin-C and tenascin-R. We investigated the binding of the purified sodium channel and the extracellular domain of the β2 subunit to tenascin-C and tenascin-R in vitro. Incubation of purified sodium channels on microtiter plates coated with tenascin-C revealed saturable and specific binding with an apparent Kd of ≈15 nM. Glutathione S-transferase-tagged fusion proteins containing various segments of tenascin-C and tenascin-R were purified, digested with thrombin to remove the epitope tag, immobilized on microtiter dishes, and tested for their ability to bind purified sodium channel or the epitope-tagged extracellular domain of β2 subunits. Both purified sodium channels and the extracellular domain of the β2 subunit bound specifically to fibronectin type III repeats 1–2, A, B, and 6–8 of tenascin-C and fibronectin type III repeats 1–2 and 6–8 of tenascin-R but not to the epidermal growth factor-like domain or the fibrinogen-like domain of these molecules. The binding of neuronal sodium channels to extracellular matrix molecules such as tenascin-C and tenascin-R may play a crucial role in localizing sodium channels in high density at axon initial segments and nodes of Ranvier or in regulating the activity of immobilized sodium channels in these locations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The α4 laminin subunit is a component of endothelial cell basement membranes. An antibody (2A3) against the α4 laminin G domain stains focal contact-like structures in transformed and primary microvascular endothelial cells (TrHBMECs and HMVECs, respectively), provided the latter cells are activated with growth factors. The 2A3 antibody staining colocalizes with that generated by αv and β3 integrin antibodies and, consistent with this localization, TrHBMECs and HMVECs adhere to the α4 laminin subunit G domain in an αvβ3-integrin–dependent manner. The αvβ3 integrin/2A3 antibody positively stained focal contacts are recognized by vinculin antibodies as well as by antibodies against plectin. Unusually, vimentin intermediate filaments, in addition to microfilament bundles, interact with many of the αvβ3 integrin-positive focal contacts. We have investigated the function of α4-laminin and αvβ3-integrin, which are at the core of these focal contacts, in cultured endothelial cells. Antibodies against these proteins inhibit branching morphogenesis of TrHBMECs and HMVECs in vitro, as well as their ability to repopulate in vitro wounds. Thus, we have characterized an endothelial cell matrix adhesion, which shows complex cytoskeletal interactions and whose assembly is regulated by growth factors. Our data indicate that this adhesion structure may play a role in angiogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcriptional response to epidermal growth factor (EGF) was examined in a cultured cell model of adhesion. Gene expression was monitored in human embryonic kidney cells (HEK293) after attachment of cells to the extracellular matrix (ECM) proteins, laminin, and fibronectin, by using complementary DNA micorarrays printed with 1,718 individual human genes. Cluster analysis revealed that the influence of EGF on gene expression, either positive or negative, was largely independent of ECM composition. However, clusters of EGF-regulated genes were identified that were diagnostic of the type of ECM proteins to which cells were attached. In these clusters, attachment of cells to a laminin or fibronectin substrata specifically modified the direction of gene expression changes in response to EGF stimulation. For example, in HEK293 cells attached to fibronectin, EGF stimulated an increase in the expression of some genes; however, genes in the same group were nonresponsive or even suppressed in cells attached to laminin. Many of the genes regulated by EGF and ECM proteins in this manner are involved in ECM and cytoskeletal architecture, protein synthesis, and cell cycle control, indicating that cell responses to EGF stimulation can be dramatically affected by ECM composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Starch granules from maize (Zea mays) contain a characteristic group of polypeptides that are tightly associated with the starch matrix (C. Mu-Forster, R. Huang, J.R. Powers, R.W. Harriman, M. Knight, G.W. Singletary, P.L. Keeling, B.P. Wasserman [1996] Plant Physiol 111: 821–829). Zeins comprise about 50% of the granule-associated proteins, and in this study their spatial distribution within the starch granule was determined. Proteolysis of starch granules at subgelatinization temperatures using the thermophilic protease thermolysin led to selective removal of the zeins, whereas granule-associated proteins of 32 kD or above, including the waxy protein, starch synthase I, and starch-branching enzyme IIb, remained refractory to proteolysis. Granule-associated proteins from maize are therefore composed of two distinct classes, the surface-localized zeins of 10 to 27 kD and the granule-intrinsic proteins of 32 kD or higher. The origin of surface-localized δ-zein was probed by comparing δ-zein levels of starch granules obtained from homogenized whole endosperm with granules isolated from amyloplasts. Starch granules from amyloplasts contained markedly lower levels of δ-zein relative to granules prepared from whole endosperm, thus indicating that δ-zein adheres to granule surfaces after disruption of the amyloplast envelope. Cross-linking experiments show that the zeins are deposited on the granule surface as aggregates. In contrast, the granule-intrinsic proteins are prone to covalent modification, but do not form intermolecular cross-links. We conclude that individual granule intrinsic proteins exist as monomers and are not deposited in the form of multimeric clusters within the starch matrix.