30 resultados para element response
Resumo:
Human peripheral blood lymphocytes (PBLs) were transduced with a number of recombinant retroviruses including RRz2, an LNL6-based virus with a ribozyme targeted to the human immunodeficiency virus (HIV) tat gene transcript inserted within the 3' region of the neomycin-resistance gene; RASH5, and LNHL-based virus containing an antisense sequence to the 5' leader region of HIV-1 downstream of the human cytomegalovirus promoter; and R20TAR, an LXSN-based virus with 20 tandem copies of the HIV-1 trans-activation response element sequence driven by the Moloney murine leukemia virus long terminal repeat. After G418 selection, transduced PBLs were challenged with the HIV-1 laboratory strain IIIB and a primary clinical isolate of HIV-1, 82H. Results showed that PBLs from different donors could be transduced and that this conferred resistance to HIV-1 infection. For each of the constructs, a reduction of approximately 70% in p24 antigen level relative to the corresponding control-vector-transduced PBLs was observed. Molecular analyses showed constitutive expression of all the transduced genes from the retroviral long terminal repeat, but no detectable transcript was seen from the internal human cytomegalovirus transcript was seen from the internal human cytomegalovirus promoter for the antisense construct. Transduction of, and consequent transgene expression in, PBLs did not impact on the surface expression of either CD4+/CD8+ (measured by flow cytometry) or on cell doubling time (examined by [3H]thymidine uptake). These results indicate the potential utility of these anti-HIV-1 gene therapeutic agents and show the preclinical value of this PBL assay system.
Resumo:
The trans-activation response element (TAR) found near the 5' end of the viral RNA of the human immunodeficiency virus contains a 3-nt bulge that is recognized by the virally encoded trans-activator protein (Tat), an important mediator of transcriptional activation. Insertion of the TAR bulge into double-stranded RNA is known to result in reduced electrophoretic mobility, suggestive of a bulge-induced bend. Furthermore, NMR studies indicate that Arg causes a change in the structure of the TAR bulge, possibly reducing the bulge angle. However, neither of these effects has been quantified, nor have they been compared with the effects of the TAR-Tat interaction. Recently, an approach for the quantification of bulge-induced bends has been described in which hydrodynamic measurements, employing the method of transient electric birefringence, have yielded precise estimates for the angles of a series of RNA bulges, with the angles ranging from 7 degrees to 93 degrees. In the current study, transient electric birefringence measurements indicate that the TAR bulge introduces a bend of 50 degrees +/- 5 degrees in the absence of Mg2+. Addition of Arg leads to essentially complete straightening of the helix (to < 10 degrees) with a transition midpoint in the 1 mM range. This transition demonstrates specificity for the TAR bulge: no comparable transition was observed for U3 or A3 (control) bulges with differing flanking sequences. An essentially identical structural transition is observed for the Tat-derived peptide, although the transition midpoint for the latter is near 1 microM. Finally, low concentrations of Mg2+ alone reduce the bend angle by approximately 50%, consistent with the effects of Mg2+ on other pyrimidine bulges. This last observation is important in view of the fact that most previous structural/binding studies were performed in the absence of Mg2+.
Resumo:
To investigate the regulation of the human fatty acid synthase gene by the thyroid hormone triiodothyronine, various constructs of the human fatty acid synthase promoter and the luciferase reporter gene were transfected in combination with plasmids expressing the thyroid hormone and the retinoid X receptors in HepG2 cells. The reporter gene was activated 25-fold by the thyroid hormone in the presence of the thyroid hormone receptor. When both the thyroid hormone and the retinoid X receptors were expressed in HepG2 cells, there was about a 100-fold increase in reporter gene expression. 5′-Deletion analysis disclosed two thyroid hormone response elements, TRE1 (nucleotides −870 to −650) and TRE2 (nucleotides −272 to −40), in the human fatty acid synthase promoter. The presence of thyroid hormone response elements in these two regions of the promoter was confirmed by cloning various fragments of these two regions in the minimal thymidine kinase promoter−luciferase reporter gene plasmid construct and determining reporter gene expression. The results of this cloning procedure and those of electrophoretic mobility shift assays indicated that the sequence GGGTTAcgtcCGGTCA (nucleotides −716 to −731) represents TRE1 and that the sequence GGGTCC (nucleotides −117 to −112) represents TRE2. The sequence of TRE1 is very similar to the consensus sequence of the thyroid hormone response element, whereas the sequence of TRE2 contains only a half-site of the thyroid hormone response element consensus motif because it lacks the direct repeat. The sequences on either side of TRE2 seem to influence its response to the thyroid hormone and retinoid X receptors.
Resumo:
The Xlim-1 gene is activated in the late blastula stage of Xenopus embryogenesis in the mesoderm, and its RNA product becomes concentrated in the Spemann organizer at early gastrula stage. A major regulator of early expression of Xlim-1 is activin or an activin-like signal. We report experiments aiming to identify the activin response element in the Xlim-1 gene. The 5′ flanking region of the gene contains a constitutive promoter that is not activin responsive, whereas sequences in the first intron mediate repression of basal promoter activity and stimulation by activin. An intron-derived fragment of 212 nt is the smallest element that could mediate activin responsiveness. Nodal and act-Vg1, factors with signaling properties similar to activin, also stimulated Xlim-1 reporter constructs, whereas BMP-4 did not stimulate or repress the constructs. The mechanism of activin regulation of Xlim-1 and the sequence of the response element are distinct from activin response elements of other genes studied so far.
Resumo:
Synthesis of mouse metallothionein (MT)-I and MT-II is transcriptionally induced by the synthetic glucocorticoid, dexamethasone (DEX) or both in vivo as well as in numerous cell lines. However, the location(s) of a glucocorticoid response element (GRE) has not been described. The observation that a marked MT-I gene, as well as heterologous genes, when placed in the context of 17 kb of flanking sequence from the MT locus, are inducible by DEX and lipopolysaccharide in transgenic mice renewed the search for the GRE. Analysis of a series of deletion constructs from this 17-kb region in cultured cells identified a single 455-bp region that conferred DEX induction on a reporter gene. This 455-bp region contains two GREs that bind to the glucocorticoid receptor as assessed by gel mobility shift. Deletion of this fragment from the 17-kb flanking region eliminates the DEX responsiveness of reporter genes. The two GREs, which are located ≈1 kb upstream of the MT-II gene and ≈7 kb upstream of the MT-I gene, are necessary for induction of both genes and can function independently of elements within the proximal promoter region of either gene.
Resumo:
Flavin-containing monooxygenase from yeast (yFMO) carries out the O2- and NADPH-dependent oxidation of biological thiols, including oxidizing glutathione to glutathione disulfide. FMO provides a large fraction of the oxidizing necessary for proper folding of disulfide bond-containing proteins; deletion of the enzyme reduces proper folding of endogenous carboxypeptidase Y by about 40%. The enzyme is not essential to cell viability because other enzymes can generate a significant fraction of the oxidizing equivalents required by the cell. However, yFMO is vital to the yeast response to reductive stress. FMO1 deletion mutants grow poorly under reductive stress, and carboxypeptidase Y activity is less than 10% of that in a stressed wild type. The FMO1 gene appears to be under control of an unfolded protein response element and is inducible by factors, such as reductive stress, that elicit the unfolded protein response. Reductive stress can increase yFMO activity at least 6-fold. This increased activity allows the cell to process endogenous disulfide bond-containing proteins and also to allow correct folding of disulfide-bonded proteins expressed from multicopy plasmids. The unfolded protein response is mediated by the Hac1p transcription factor that mediates virtually all of the induction of yFMO triggered by exogenous reducing agents.
Resumo:
The adenylate uridylate-rich elements (AREs) mediate the rapid turnover of mRNAs encoding proteins that regulate cellular growth and body response to exogenous agents such as microbes, inflammatory and environmental stimuli. However, the full repertoire of ARE-containing mRNAs is unknown. Here, we explore the distribution of AREs in human mRNA sequences. Computational derivation of a 13-bp ARE pattern was performed using multiple expectation maximization for motif elicitations (MEME) and consensus analyses. This pattern was statistically validated for the specificity towards the 3′-untranslated region and not coding region. The computationally derived ARE pattern is the basis of a database which contains non-redundant full-length ARE-mRNAs. The ARE-mRNA database (ARED; http://rc.kfshrc.edu.sa/ared) reveals that ARE-mRNAs encode a wide repertoire of functionally diverse proteins that belong to different biological processes and are important in several disease states. Cluster analysis was performed using the ARE sequences to demonstrate potential relationships between the type and number of ARE motifs, and the functional characteristics of the proteins.
Resumo:
The Drosophila homolog of the retinoid X receptor, ultraspiracle (USP), heterodimerizes with the ecdysone receptor (EcR) to form a functional complex that mediates the effects of the steroid molting hormone ecdysone by activating and repressing expression of ecdysone response genes. As with other retinoid X receptor heterodimers, EcR/USP affects gene transcription in a ligand-modulated manner. We used in vivo, cell culture, and biochemical approaches to analyze the functions of two usp alleles, usp3 and usp4, which encode stable proteins with defective DNA-binding domains. We observed that USP is able to activate as well as repress the Z1 isoform of the ecdysone-responsive broad complex (BrC-Z1). Activation of BrC-Z1 as well as EcR, itself an ecdysone response gene, can be mediated by both the USP3 and USP4 mutant proteins. USP3 and USP4 also activate an ecdysone-responsive element, hsp27EcRE, in cultured cells. These results differ from the protein null allele, usp2, which is unable to mediate activation [Schubiger, M. & Truman, J. W. (2000) Development 127, 1151–1159]. BrC-Z1 repression is compromised in all three usp alleles, suggesting that repression involves the association of USP with DNA. Our results distinguish two mechanisms by which USP modulates the properties of EcR: one that involves the USP DNA-binding domain and one that can be achieved solely through the ligand-binding domain. These newly revealed properties of USP might implicate similar properties for retinoid X receptor.
Resumo:
Study of the mechanism of HIV-1 postintegration latency in the ACH2 cell line demonstrates that these cells failed to increase HIV-1 production following treatment with exogenous Tat. Reasoning that the defect in ACH2 cells involves the Tat response, we analyzed the sequence of tat cDNA and Tat responsive element (TAR) from the virus integrated in ACH2. Tat cDNA sequence is closely related to that of HIV LAI, and the encoded protein is fully functional in terms of long terminal repeat (LTR) transactivation. Cloning of a region corresponding to the 5'-LTR from ACH2, however, identified a point mutation (C37 -> T) in TAR. This mutation impaired Tat responsiveness of the LTR in transient transfection assays, and the measured defect was complemented in cells that had been treated with tetradecanoyl phorbol acetate or tumor necrosis factor type alpha (TNF-alpha). A compensatory mutation in TAR (G28 -> A), designed to reestablish base pairing in the TAR hairpin, restored wild-type Tat responsiveness. When the (C37 -> T) mutation was introduced in an infectious clone of HIV-1, no viral production was measured in the absence of TNF-alpha, whereas full complementation was observed when the infection was conducted in the presence of TNF-alpha or when a compensatory mutation (G28 -> A) was introduced into TAR. These experiments identify a novel mutation associated with HIV-1 latency and suggest that alterations in the Tat-TAR axis can be a crucial determinant of the latent phenotype in infected individuals.
Resumo:
The stress response promoter element (STRE) confers increased transcription to a set of genes following environmental or metabolic stress in Saccharomyces cerevisiae. A lambda gt11 library was screened to isolate clones encoding STRE-binding proteins, and one such gene was identified as MSN2, which encoded a zinc-finger transcriptional activator. Disruption of the MSN2 gene abolished an STRE-binding activity in crude extracts as judged by both gel mobility-shift and Southwestern blot experiments, and overexpression of MSN2 intensified this binding activity. Northern blot analysis demonstrated that for the known or suspected STRE-regulated genes DDR2, CTT1, HSP12, and TPS2, transcript induction was impaired following heat shock or DNA damage treatment in the msn2-disrupted strain and was constitutively activated in a strain overexpressing MSN2. Furthermore, heat shock induction of a STRE-driven reporter gene was reduced more than 6-fold in the msn2 strain relative to wild-type cells. Taken together, these data indicate that Msn2p is the transcription factor that activates STRE-regulated genes in response to stress. Whereas nearly 85% of STRE-mediated heat shock induction was MSN2 dependent, there was significant MSN2-independent expression. We present evidence that the MSN2 homolog, MSN4, can partially replace MSN2 for transcriptional activation following stress. Moreover, our data provides evidence for the involvement of additional transcription factors in the yeast multistress response.
Resumo:
We have previously characterized a regulatory element located between -294 and -200 within the mouse mammary tumor virus (MMTV) long terminal repeat (LTR). This element termed AA element cooperates with the glucocorticoid response elements (GREs) for glucocorticoid activation. Here we show that in a MMTV LTR wild type context, the deletion of this element significantly reduces both glucocorticoid and progestin activation of the promoter. Deletion of the two most distal GREs forces the glucocorticoid receptor (GR) and the progestin receptor (PR) to bind the same response elements and results in a dramatic decrease in the inducibility of the MMTV promoter by the two hormones. The simultaneous deletion of the two distal GREs and of the AA element abolishes completely the glucocorticoid-induced activation of the promoter. In contrast it restores a significant level of progestin-induced activation. This different effect of the double deletion on glucocorticoid- and progestin-induced MMTV promoter activation is not cell specific because it is also observed, and is even stronger, when either GR or PR is expressed in the same cell line (NIH 3T3). This is the first description of a mutated MMTV promoter that, although retaining GREs, is activated by progestins and not by glucocorticoids. This suggests a different functional cooperation between protein(s) interacting with the AA element and GR or PR. Cotransfections with constructs containing wild-type or mutated MMTV LTR with either PR lacking its C-terminal domain or GR/PR chimeras in which the N-terminal domains have been exchanged demonstrate that the N-terminal domains of the receptors specify the different behavior of GR and PR regarding the AA element.
Resumo:
We describe a dominant-negative approach in vivo to assess the strong, early upregulation of thyroid hormone receptor beta (TR beta) gene in response to thyroid hormone, characteristic of the onset of natural and thyroid hormone-induced amphibian metamorphosis, 3,3',5-Triiodo-thyronine (T3) treatment of organ cultures of premetamorphic Xenopus tadpole tails coinjected in vivo with the wild-type Xenopus TR beta (wt-xTR beta) and three different thyroid responsive element chloramphenicol acetyltransferase (TRE-CAT) reporter constructs, including a direct repeat +4 (DR +4) element in the -200/+87 fragment of the xTR beta promoter, resulted in a 4- to 8-fold enhancement of CAT activity. Two human C-terminal TR beta 1 mutants (delta-hTR beta 1 and Ts-hTR beta 1), an artificial Xenopus C-terminal deletion mutant (mt-xTR beta), and the oncogenic viral homology v-erbA, none of which binds T3, inhibited this T3 response of the endogenous wt-xTR in Xenopus XTC-2 cells cotransfected with the -1600/+87 xTR beta promoter-CAT construct, the potency of the dominant-negative effect of these mutant TRs being a function of the strength of their heterodimerization with Xenopus retinoid X receptor gamma. Coinjection of the dominant-negative Xenopus and human mutant TR beta s into Xenopus tadpole tails totally abolished the T3 responsiveness of the wt-xTR beta with different TREs, including the natural DR +4 TRE of the xTR beta promoter.
Resumo:
We have studied the effects of retinoic acid (RA) and thyroid hormone (3,3',5-triiodothyronine; T3) on platelet-activating factor receptor (PAFR) gene expression in intact rats and the ability of two human PAFR gene promoters (PAFR promoters 1 and 2) to generate two transcripts (PAFR transcripts 1 and 2). Northern blotting showed that RA and T3 regulated PAFR gene expression only in rat tissues that express PAFR transcript 2. Functional analysis of the human PAFR promoter 2 revealed that responsiveness to RA and T3 was conferred through a 24-bp element [PAFR-hormone response element (HRE) located from -67 to -44 bp of the transcription start site, whereas PAFR promoter 1 did not respond to these hormones. The PAFR-HRE is composed of three direct repeated TGACCT-like hexamer motifs with 2-and 4-bp spaces, and the two upstream and two downstream motifs were identified as response elements for RA and T3. Thus, the PAF-PAFR pathway is regulated by the PAFR level altered by a tissue-specific response to RA and T3 through the PAFR-HRE of the PAFR promoter 2.
Resumo:
Recent structural studies of the minimal core DNA-binding domain of p53 (p53DBD) complexed to a single consensus pentamer sequence and of the isolated p53 tetramerization domain have provided valuable insights into their functions, but many questions about their interacting roles and synergism remain unanswered. To better understand these relationships, we have examined the binding of the p53DBD to two biologically important full-response elements (the WAF1 and ribosomal gene cluster sites) by using DNA circularization and analytical ultracentrifugation. We show that the p53DBD binds DNA strongly and cooperatively with p53DBD to DNA binding stoichiometries of 4:1. For the WAF1 element, the mean apparent Kd is (8.3 +/- 1.4) x 10(-8) M, and no intermediate species of lower stoichiometries can be detected. We show further that complex formation induces an axial bend of at least 60 degrees in both response elements. These results, taken collectively, demonstrate that p53DBD possesses the ability to direct the formation of a tight nucleoprotein complex having the same 4:1 DNA-binding stoichiometry as wild-type p53 which is accompanied by a substantial conformational change in the response-element DNA. This suggests that the p53DBD may play a role in the tetramerization function of p53. A possible role in this regard is proposed.
Resumo:
Vascular endothelial cells, serving as a barrier between vessel and blood, are exposed to shear stress in the body. Although endothelial responses to shear stress are important in physiological adaption to the hemodynamic environments, they can also contribute to pathological conditions--e.g., in atherosclerosis and reperfusion injury. We have previously shown that shear stress mediates a biphasic response of monocyte chemotactic protein 1 (MCP-1) gene expression in vascular endothelial cells and that the regulation is at the transcriptional level. These observations led us to functionally analyze the 550-bp promoter region of the MCP-1-encoding gene to define the cis element responding to shear stress. The shear stress/luciferase assay on the deletion constructs revealed that a 38-bp segment (-53 to -90 bp relative to the transcription initiation site) containing two divergent phorbol ester "12-O-tetradecanoylphorbol 13-acetate" (TPA)-responsive elements (TRE) is critical for shear inducibility. Site-specific mutations on these two sites further demonstrated that the proximal one (TGACTCC) but not the distal one (TCACTCA) was shear-responsive. Shear inducibility was lost after the mutation or deletion of the proximal site. This molecular mechanism of shear inducibility of the MCP-1 gene was functional in both the epithelial-like HeLa cells and bovine aortic endothelial cells (BAEC). In a construct with four copies of the TRE consensus sequences TGACTACA followed by the rat prolactin minimal promoter and luciferase gene, shear stress induced the reporter activities by 35-fold and 7-fold in HeLa cells and BAEC, respectively. The application of shear stress on BAEC also induced a rapid and transient phosphorylation of mitogen-activated protein kinases. Pretreatment of BAEC with TPA attenuated the shear-induced mitogen-activated protein kinase phosphorylation, suggesting that shear stress and TPA share a similar signal transduction pathway in activating cells. The present study provides a molecular basis for the transient induction of MCP-1 gene by shear stress.