193 resultados para dopamine neurons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Astrocytes can release glutamate in a calcium-dependent manner and consequently signal to adjacent neurons. Whether this glutamate release pathway is used during physiological signaling or is recruited only under pathophysiological conditions is not well defined. One reason for this lack of understanding is the limited knowledge about the levels of calcium necessary to stimulate glutamate release from astrocytes and about how they compare with the range of physiological calcium levels in these cells. We used flash photolysis to raise internal calcium in astrocytes, while monitoring astrocytic calcium levels and glutamate, which evoked slow inward currents that were recorded electrophysiologically from single neurons grown on microislands of astrocytes. With this approach, we demonstrate that modest changes of astrocytic calcium, from 84 to 140 nM, evoke substantial glutamatergic currents in neighboring neurons (−391 pA), with a Hill coefficient of 2.1 to 2.7. Because the agonists glutamate, norepinephrine, and dopamine all raise calcium in astrocytes to levels exceeding 1.8 μM, these quantitative studies demonstrate that the astrocytic glutamate release pathway is engaged at physiological levels of internal calcium. Consequently, the calcium-dependent release of glutamate from astrocytes functions within an appropriate range of astrocytic calcium levels to be used as a signaling pathway within the functional nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Typical neuroleptic drugs elicit their antipsychotic effects mainly by acting as antagonists at dopamine D2 receptors. Much of this activity is thought to occur in the cerebral cortex, where D2 receptors are found largely in inhibitory GABAergic neurons. Here we confirm this localization at the electron microscopic level, but additionally show that a subset of cortical interneurons with low or undetectable expression of D2 receptor isoforms are surrounded by astrocytic processes that strongly express D2 receptors. Ligand binding of isolated astrocyte preparations indicate that cortical astroglia account for approximately one-third of the total D2 receptor binding sites in the cortex, a proportion that we found conserved among rodent, monkey, and human tissues. Further, we show that the D2 receptor-specific agonist, quinpirole, can induce Ca2+ elevation in isolated cortical astrocytes in a pharmacologically reversible manner, thus implicating this receptor in the signaling mechanisms by which astrocytes communicate with each other as well as with neurons. The discovery of D2 receptors in astrocytes with a selective anatomical relationship to interneurons represents a neuron/glia substrate for cortical dopamine action in the adult cerebral cortex and a previously unrecognized site of action for antipsychotic drugs with affinities at the D2 receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The A2AR is largely coexpressed with D2Rs and enkephalin mRNA in the striatum where it modulates dopaminergic activity. Activation of the A2AR antagonizes D2R-mediated behavioral and neurochemical effects in the basal ganglia through a mechanism that may involve direct A2AR–D2R interaction. However, whether the D2R is required for the A2AR to exert its neural function is an open question. In this study, we examined the role of D2Rs in A2AR-induced behavioral and cellular responses, by using genetic knockout (KO) models (mice deficient in A2ARs or D2Rs or both). Behavioral analysis shows that the A2AR agonist 2–4-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine reduced spontaneous as well as amphetamine-induced locomotion in both D2 KO and wild-type mice. Conversely, the nonselective adenosine antagonist caffeine and the A2AR antagonist 8-(3-chlorostyryl)caffeine produced motor stimulation in mice lacking the D2R, although the stimulation was significantly attentuated. At the cellular level, A2AR inactivation counteracted the increase in enkephalin expression in striatopallidal neurons caused by D2R deficiency. Consistent with the D2 KO phenotype, A2AR inactivation partially reversed both acute D2R antagonist (haloperidol)-induced catalepsy and chronic haloperidol-induced enkephalin mRNA expression. Together, these results demonstrate that A2ARs elicit behavioral and cellular responses despite either the genetic deficiency or pharmacological blockade of D2Rs. Thus, A2AR-mediated neural functions are partially independent of D2Rs. Moreover, endogenous adenosine acting at striatal A2ARs may be most accurately viewed as a facilitative modulator of striatal neuronal activity rather than simply as an inhibitory modulator of D2R neurotransmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To visualize and isolate live dopamine (DA)-producing neurons in the embryonic ventral mesencephalon, we generated transgenic mice expressing green fluorescent protein (GFP) under the control of the rat tyrosine hydroxylase gene promoter. In the transgenic mice, GFP expression was observed in the developing DA neurons containing tyrosine hydroxylase. The outgrowth and cue-dependent guidance of GFP-labeled axons was monitored in vitro with brain culture systems. To isolate DA neurons expressing GFP from brain tissue, cells with GFP fluorescence were sorted by fluorescence-activated cell sorting. More than 60% of the sorted GFP+ cells were positive for tyrosine hydroxylase, confirming that the population had been successfully enriched with DA neurons. The sorted GFP+ cells were transplanted into a rat model of Parkinson's disease. Some of these cells survived and innervated the host striatum, resulting in a recovery from Parkinsonian behavioral defects. This strategy for isolating an enriched population of DA neurons should be useful for cellular and molecular studies of these neurons and for clinical applications in the treatment of Parkinson's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dopamine hypothesis of schizophrenia proposes that hyperactivity of dopaminergic transmission is associated with this illness, but direct observation of abnormalities of dopamine function in schizophrenia has remained elusive. We used a newly developed single photon emission computerized tomography method to measure amphetamine-induced dopamine release in the striatum of fifteen patients with schizophrenia and fifteen healthy controls. Amphetamine-induced dopamine release was estimated by the amphetamine-induced reduction in dopamine D2 receptor availability, measured as the binding potential of the specific D2 receptor radiotracer [123I] (S)-(-)-3-iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2-pyrrolidinyl) methyl]benzamide ([123I]IBZM). The amphetamine-induced decrease in [123I]IBZM binding potential was significantly greater in the schizophrenic group (-19.5 +/- 4.1%) compared with the control group (-7.6 +/- 2.1%). In the schizophrenic group, elevated amphetamine effect on [123I]IBZM binding potential was associated with emergence or worsening of positive psychotic symptoms. This result suggests that psychotic symptoms elicited in this experimental setting in schizophrenic patients are associated with exaggerated stimulation of dopaminergic transmission. Such an observation would be compatible with an abnormal responsiveness of dopaminergic neurons in schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dopamine (DA) deficiency has been implicated in Lesch-Nyhan disease (LND), a genetic disorder that is characterized by hyperuricemia, choreoathetosis, dystonia, and compulsive self-injury. To establish that DA deficiency is present in LND, the ligand WIN-35,428, which binds to DA transporters, was used to estimate the density of DA-containing neurons in the caudate and putamen of six patients with classic LND. Comparisons were made with 10 control subjects and 3 patients with Rett syndrome. Three methods were used to quantify the binding of the DA transporter so that its density could be estimated by a single dynamic positron emission tomography study. These approaches included the caudate- or putamen-to-cerebellum ratio of ligand at 80-90 min postinjection, kinetic analysis of the binding potential [Bmax/(Kd x Vd)] using the assumption of equal partition coefficients in the striatum and the cerebellum, and graphical analysis of the binding potential. Depending on the method of analysis, a 50-63% reduction of the binding to DA transporters in the caudate, and a 64-75% reduction in the putamen of the LND patients was observed compared to the normal control group. When LND patients were compared to Rett syndrome patients, similar reductions were found in the caudate (53-61%) and putamen (67-72%) in LND patients. Transporter binding in Rett syndrome patients was not significantly different from the normal controls. Finally, volumetric magnetic resonance imaging studies detected a 30% reduction in the caudate volume of LND patients. To ensure that a reduction in the caudate volume would not confound the results, a rigorous partial volume correction of the caudate time activity curve was performed. This correction resulted in an even greater decrease in the caudate-cerebellar ratio in LND patients when contrasted to controls. To our knowledge, these findings provide the first in vivo documentation of a dopaminergic reduction in LND and illustrate the role of positron emission tomography imaging in investigating neurodevelopmental disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nerve growth factor (NGF) is well characterized for its neurotrophic actions on peripheral sensory and sympathetic neurons and on central cholinergic neurons of the basal forebrain. Recent evidence, however, has shown high levels of NGF to be present in a variety of biological fluids after inflammatory and autoimmune responses, suggesting that NGF is a mediator of immune interactions. Increased NGF serum levels have been reported in both humans and experimental animal models of psychological and physical stress, thus implicating NGF in neuroendocrine interactions as well. The possible source(s) and the regulatory mechanisms involved in the control of serum NGF levels, however, still remain to be elucidated. We now report the presence of both NGF gene transcripts and protein in the anterior pituitary. Immunofluorescence analysis indicated that hypophysial NGF is selectively localized in mammotroph cells and stored in secretory granules. NGF is cosecreted with prolactin from mammotroph cells by a neurotransmitter-dependent mechanism that can be pharmacologically regulated. Activation of the dopamine D2 receptor subtype, which physiologically controls prolactin release, resulted in a complete inhibition of vasoactive intestinal peptide-stimulated NGF secretion in vitro, whereas the specific D2 antagonist (-)-sulpiride stimulated NGF secretion in vivo, suggesting that the anterior pituitary is a possible source of circulating NGF. Given the increased NGF serum levels in stressful conditions and the newly recognized immunoregulatory function of this protein, NGF, together with prolactin, may thus be envisaged as an immunological alerting signal under neuronal control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous research indicates that norepinephrine and dopamine stimulate release of luteinizing hormone (LH)-releasing hormone (LHRH), which then reaches the adenohypophysis via the hypophyseal portal vessels to release LH. Norepinephrine exerts its effect via alpha 1-adrenergic receptors, which stimulate the release of nitric oxide (NO) from nitricoxidergic (NOergic) neurons in the medial basal hypothalamus (MBH). The NO activates guanylate cyclase and cyclooxygenase, thereby inducing release of LHRH into the hypophyseal portal vessels. We tested the hypothesis that these two catecholamines modulate NO release by local feedback. MBH explants were incubated in the presence of sodium nitroprusside (NP), a releaser of NO, and the effect on release of catecholamines was determined. NP inhibited release of norepinephrine. Basal release was increased by incubation of the tissue with the NO scavenger hemoglobin (20 micrograms/ml). Hemoglobin also blocked the inhibitory effect of NP. In the presence of high-potassium (40 mM) medium to depolarize cell membranes, norepinephrine release was increased by a factor of 3, and this was significantly inhibited by NP. Hemoglobin again produced a further increase in norepinephrine release and also blocked the action of NP. When constitutive NO synthase was inhibited by the competitive inhibitor NG-monomethyl-L-arginine (NMMA) at 300 microM, basal release of norepinephrine was increased, as was potassium-evoked release, and this was associated in the latter instance with a decrease in tissue concentration, presumably because synthesis did not keep up with the increased release in the presence of NMMA. The results were very similar with dopamine, except that reduction of potassium-evoked dopamine release by NP was not significant. However, the increase following incubation with hemoglobin was significant, and hemoglobin, when incubated with NP, caused a significant elevation in dopamine release above that with NP alone. In this case, NP increased tissue concentration of dopamine along with inhibiting release, suggesting that synthesis continued, thereby raising the tissue concentration in the face of diminished release. When the tissue was incubated with NP plus hemoglobin, which caused an increase in release above that obtained with NP alone, the tissue concentration decreased significantly compared with that in the absence of hemoglobin, indicating that, with increased release, release exceeded synthesis, causing a fall in tissue concentration. When NO synthase was blocked by NMMA, the release of dopamine, under either basal or potassium-evoked conditions, was increased. Again, in the latter instance the tissue concentration declined significantly, presumably because synthesis did not match release. Therefore, the results were very similar with both catecholamines and indicate that NO acts to suppress release of both amines. Since both catecholamines activate the release of LHRH, the inhibition of their release by NO serves as an ultra-short-loop negative feedback by which NO inhibits the release of the catecholamines, thereby reducing the activation of the NOergic neurons and decreasing the release of LHRH. This may be an important means for terminating the pulses of release of LHRH, which generate the pulsatile release of LH that stimulates gonadal function in both male and female mammals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To achieve a better understanding of how D5 dopamine receptors mediate the actions of dopamine in brain, we have developed antibodies specific for the D5 receptor. D5 antibodies reacted with recombinant baculovirus-infected Sf9 cells expressing the D5 receptor but not with the D1 receptor or a variety of other catecholaminergic and muscarinic receptors. Epitope-tagged D5 receptors expressed in mammalian cells were reactive with both D5 antibodies and an epitope-specific probe. A mixture of N-linked glycosylated polypeptides and higher molecular-mass species was detected on immunoblots of membrane fractions of D5-transfected cells and also of primate brain. D5 receptor antibodies intensely labeled pyramidal neurons in the prefrontal cortex, whereas spiny medium-sized neurons and aspiny large interneurons of the caudate nucleus were relatively lightly labeled. Antibodies to the D5 dopamine receptor should prove important in experimentally determining specific roles for the D5 and D1 receptors in cortical processes and diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The olfactory system is remarkable in its capacity to discriminate a wide range of odorants through a series of transduction events initiated in olfactory receptor neurons. Each olfactory neuron is expected to express only a single odorant receptor gene that belongs to the G protein coupled receptor family. The ligand–receptor interaction, however, has not been clearly characterized. This study demonstrates the functional identification of olfactory receptor(s) for specific odorant(s) from single olfactory neurons by a combination of Ca2+-imaging and reverse transcription–coupled PCR analysis. First, a candidate odorant receptor was cloned from a single tissue-printed olfactory neuron that displayed odorant-induced Ca2+ increase. Next, recombinant adenovirus-mediated expression of the isolated receptor gene was established in the olfactory epithelium by using green fluorescent protein as a marker. The infected neurons elicited external Ca2+ entry when exposed to the odorant that originally was used to identify the receptor gene. Experiments performed to determine ligand specificity revealed that the odorant receptor recognized specific structural motifs within odorant molecules. The odorant receptor-mediated signal transduction appears to be reconstituted by this two-step approach: the receptor screening for given odorant(s) from single neurons and the functional expression of the receptor via recombinant adenovirus. The present approach should enable us to examine not only ligand specificity of an odorant receptor but also receptor specificity and diversity for a particular odorant of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The perceived speed of motion in one part of the visual field is influenced by the speed of motion in its surrounding fields. Little is known about the cellular mechanisms causing this phenomenon. Recordings from mammalian visual cortex revealed that speed preference of the cortical cells could be changed by displaying a contrast speed in the field surrounding the cell’s classical receptive field. The neuron’s selectivity shifted to prefer faster speed if the contextual surround motion was set at a relatively lower speed, and vice versa. These specific center–surround interactions may underlie the perceptual enhancement of speed contrast between adjacent fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

6-Hydroxydopamine (6-OHDA) is widely used to selectively lesion dopaminergic neurons of the substantia nigra (SN) in the creation of animal models of Parkinson’s disease. In vitro, the death of PC-12 cells caused by exposure to 6-OHDA occurs with characteristics consistent with an apoptotic mechanism of cell death. To test the hypothesis that apoptotic pathways are involved in the death of dopaminergic neurons of the SN caused by 6-OHDA, we created a replication-defective genomic herpes simplex virus-based vector containing the coding sequence for the antiapoptotic peptide Bcl-2 under the transcriptional control of the simian cytomegalovirus immediate early promoter. Transfection of primary cortical neurons in culture with the Bcl-2-producing vector protected those cells from naturally occurring cell death over 3 weeks. Injection of the Bcl-2-expressing vector into SN of rats 1 week before injection of 6-OHDA into the ipsilateral striatum increased the survival of neurons in the SN, detected either by retrograde labeling of those cells with fluorogold or by tyrosine hydroxylase immunocytochemistry, by 50%. These results, demonstrating that death of nigral neurons induced by 6-OHDA lesioning may be blocked by the expression of Bcl-2, are consistent with the notion that cell death in this model system is at least in part apoptotic in nature and suggest that a Bcl-2-expressing vector may have therapeutic potential in the treatment of Parkinson’s disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small HIV-1 accessory protein Vpr (virus protein R) is a multifunctional protein that is present in the serum and cerebrospinal fluid of AIDS patients. We previously showed that Vpr can form cation-selective ion channels across planar lipid bilayers, introducing the possibility that, if incorporated into the membranes of living cells, Vpr might form ion channels and consequently perturb the maintained ionic gradient. In this study, we demonstrate, by a variety of approaches, that Vpr added extracellularly to intact cells does indeed form ion channels. We use confocal laser scanning microscopy to examine the subcellular localization of fluorescently labeled Vpr. Plasmalemma depolarization and damage are examined using the anionic potential-sensitive dye bis(1,3-dibutylbarbituric acid) trimethine oxonol and propidium iodide (PI), respectively, and the effect of Vpr on whole-cell current is demonstrated directly by using the patch-clamp technique. We show that recombinant purified extracellular Vpr associates with the plasmalemma of hippocampal neurons to cause a large inward cation current and depolarization of the plasmalemma, eventually resulting in cell death. Thus, we demonstrate a physiological action of extracellular Vpr and present its mechanistic basis. These findings may have important implications for neuropathologies in AIDS patients who possess significant amounts of Vpr in the cerebrospinal fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erythropoietin (EPO) produced by the kidney and the liver (in fetuses) stimulates erythropoiesis. In the central nervous system, neurons express EPO receptor (EPOR) and astrocytes produce EPO. EPO has been shown to protect primary cultured neurons from N-methyl-d-aspartate (NMDA) receptor-mediated glutamate toxicity. Here we report in vivo evidence that EPO protects neurons against ischemia-induced cell death. Infusion of EPO into the lateral ventricles of gerbils prevented ischemia-induced learning disability and rescued hippocampal CA1 neurons from lethal ischemic damage. The neuroprotective action of exogenous EPO was also confirmed by counting synapses in the hippocampal CA1 region. Infusion of soluble EPOR (an extracellular domain capable of binding with the ligand) into animals given a mild ischemic treatment that did not produce neuronal damage, caused neuronal degeneration and impaired learning ability, whereas infusion of the heat-denatured soluble EPOR was not detrimental, demonstrating that the endogenous brain EPO is crucial for neuronal survival. The presence of EPO in neuron cultures did not repress a NMDA receptor-mediated increase in intracellular Ca2+, but rescued the neurons from NO-induced death. Taken together EPO may exert its neuroprotective effect by reducing the NO-mediated formation of free radicals or antagonizing their toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Varicella–zoster virus (VZV) is a human herpesvirus that causes varicella (chicken pox) as a primary infection and, after a variable period of latency in trigeminal and dorsal root ganglia, reactivates to cause herpes zoster (shingles). Both of these conditions may be followed by a variety of neurological complications, especially in immunocompromised individuals such as those with human immunodeficiency virus (HIV) infection. There have been a number of conflicting reports regarding the cellular location of latent VZV within human ganglia. To address this controversy we examined fixed wax-embedded trigeminal ganglia from 30 individuals obtained at autopsy, including 11 with HIV infection, 2 neonates, and 17 immunocompetent individuals, for the presence of latent VZV. Polymerase chain reaction (PCR), in situ hybridization, and PCR in situ amplification techniques with oligonucleotide probes and primer sequences to VZV genes 18, 21, 29, and 63 were used. VZV DNA in ganglia was detected in 15 individuals by using PCR alone, and in 12 individuals (6 normal non-HIV and 6 positive HIV individuals, but not neonatal ganglia) by using PCR in situ amplification. When in situ hybridization alone was used, 5 HIV-positive individuals and only 1 non-HIV individual showed VZV nucleic acid signals in ganglia. In all of the VZV-positive ganglia examined, VZV nucleic acid was detected in neuronal nuclei. Only occasional nonneuronal cells contained VZV DNA. We conclude from these studies that the neuron is the predominant site of latent VZV in human trigeminal ganglia.