23 resultados para determinants of the education system in Poland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have reported some type II restriction-modification (RM) gene complexes on plasmids resist displacement by an incompatible plasmid through postsegregational host killing. Such selfish behavior may have contributed to the spread and maintenance of RM systems. Here we analyze the role of regulatory genes (C), often found linked to RM gene complexes, in their interaction with the host and the other RM gene complexes. We identified the C gene of EcoRV as a positive regulator of restriction. A C mutation eliminated postsegregational killing by EcoRV. The C system has been proposed to allow establishment of RM systems in new hosts by delaying the appearance of restriction activity. Consistent with this proposal, bacteria preexpressing ecoRVC were transformed at a reduced efficiency by plasmids carrying the EcoRV RM gene complex. Cells carrying the BamHI RM gene complex were transformed at a reduced efficiency by a plasmid carrying a PvuII RM gene complex, which shares the same C specificity. The reduction most likely was caused by chromosome cleavage at unmodified PvuII sites by prematurely expressed PvuII restriction enzyme. Therefore, association of the C genes of the same specificity with RM gene complexes of different sequence specificities can confer on a resident RM gene complex the capacity to abort establishment of a second, incoming RM gene complex. This phenomenon, termed “apoptotic mutual exclusion,” is reminiscent of suicidal defense against virus infection programmed by other selfish elements. pvuIIC and bamHIC genes define one incompatibility group of exclusion whereas ecoRVC gene defines another.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer models were used to examine whether and under what conditions the multimeric protein complex is inhibited by high concentrations of one of its components—an effect analogous to the prozone phenomenon in precipitin tests. A series of idealized simple “ball-and-stick” structures representing small oligomeric complexes of protein molecules formed by reversible binding reactions were analyzed to determine the binding steps leading to each structure. The equilibrium state of each system was then determined over a range of starting concentrations and Kds and the steady-state concentration of structurally complete oligomer calculated for each situation. A strong inhibitory effect at high concentrations was shown by any protein molecule forming a bridge between two or more separable parts of the complex. By contrast, proteins linked to the outside of the complex by a single bond showed no inhibition whatsoever at any concentration. Nonbridging, multivalent proteins in the body of the complex could show an inhibitory effect or not depending on the structure of the complex and the strength of its bonds. On the basis of this study, we suggest that the prozone phenomenon will occur widely in living cells and that it could be a crucial factor in the regulation of protein complex formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA replication of phage-plasmid P4 in its host Escherichia coli depends on its replication protein α. In the plasmid state, P4 copy number is controlled by the regulator protein Cnr (copy number regulation). Mutations in α (αcr) that prevent regulation by Cnr cause P4 over-replication and cell death. Using the two-hybrid system in Saccharomyces cerevisiae and a system based on λ immunity in E.coli for in vivo detection of protein–protein interactions, we found that: (i) α protein interacts with Cnr, whereas αcr proteins do not; (ii) both α–α and αcr–αcr interactions occur and the interaction domain is located within the C-terminal of α; (iii) Cnr–Cnr interaction also occurs. Using an in vivo competition assay, we found that Cnr interferes with both α–α and αcr–αcr dimerization. Our data suggest that Cnr and α interact in at least two ways, which may have different functional roles in P4 replication control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the mammalian visual system the formation of eye-specific layers at the thalamic level depends on retinal waves of spontaneous activity, which rely on nicotinic acetylcholine receptor activation. We found that in mutant mice lacking the β2 subunit of the neuronal nicotinic receptor, but not in mice lacking the α4 subunit, retinofugal projections do not segregate into eye-specific areas, both in the dorso-lateral geniculate nucleus and in the superior colliculus. Moreover, β2−/− mice show an expansion of the binocular subfield of the primary visual cortex and a decrease in visual acuity at the cortical level but not in the retina. We conclude that the β2 subunit of the nicotinic acetylcholine receptor is necessary for the anatomical and functional development of the visual system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phases of the x-ray form factors are derived for the ripple (Pbeta') thermodynamic phase in the lecithin bilayer system. By combining these phases with experimental intensity data, the electron density map of the ripple phase of dimyristoyl-phosphatidylcholine is constructed. The phases are derived by fitting the intensity data to two-dimensional electron density models, which are created by convolving an asymmetric triangular ripple profile with a transbilayer electron density profile. The robustness of the model method is indicated by the result that many different models of the transbilayer profile yield essentially the same phases, except for the weaker, purely ripple (0,k) peaks. Even with this residual ambiguity, the ripple profile is well determined, resulting in 19 angstroms for the ripple amplitude and 10 degrees and 26 degrees for the slopes of the major and the minor sides, respectively. Estimates for the bilayer head-head spacings show that the major side of the ripple is consistent with gel-like structure, and the minor side appears to be thinner with lower electron density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current theories of sexual differentiation maintain that ovarian estrogen prevents masculine development of the copulatory system in birds, whereas estrogen derived from testicular androgens promotes masculine sexual differentiation of neuroanatomy and sexual behavior in mammals. Paradoxically, some data suggest that the neural song system in zebra finches follows the mammalian pattern with estrogenic metabolites of testicular secretions causing masculine development. To test whether the removal of estrogen from males during early development would prevent the development of masculine song systems, zebra finches were treated embryonically with an inhibitor of estrogen synthesis. In addition, this treatment in genetic female zebra finches induced both functional ovarian and testicular tissue to develop, thus allowing the assessment of the direct effects of testicular secretions on song system development. In males, the inhibition of estrogen synthesis before hatching had a small but significant effect in demasculinizing one aspect of the neural song system. In treated females, the song systems remained morphologically feminine. These results suggest that masculinization of the song system is not determined solely by testicular androgens or their estrogenic metabolites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modulation of a family of cloned neuronal calcium channels by stimulation of a coexpressed mu opioid receptor was studied by transient expression in Xenopus oocytes. Activation of the morphine receptor with the synthetic enkephalin [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO) resulted in a rapid inhibition of alpha1A (by approximately 20%) and alpha1B (by approximately 55%) currents while alpha1C and alpha1E currents were not significantly affected. The opioid-induced effects on alpha1A and alpha1B currents were blocked by pertussis toxin and the GTP analogue guanosine 5'-[beta-thio]diphosphate. Similar to modulation of native calcium currents, DAMGO induced a slowing of the activation kinetics and exhibited a voltage-dependent inhibition that was partially relieved by application of strong depolarizing pulses. alpha1A currents were still inhibited in the absence of coexpressed Ca channel alpha2 and beta subunits, suggesting that the response is mediated by the alpha1 subunit. Furthermore, the sensitivity of alpha1A currents to DAMGO-induced inhibition was increased approximately 3-fold in the absence of a beta subunit. Overall, the results show that the alpha1A (P/Q type) and the alpha1B (N type) calcium channels are selectively modulated by a GTP-binding protein (G protein). The results raise the possibility of competitive interactions between beta subunit and G protein binding to the alpha1 subunit, shifting gating in opposite directions. At presynaptic terminals, the G protein-dependent inhibition may result in decreased synaptic transmission and play a key role in the analgesic effect of opioids and morphine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fc gamma receptor-associated gamma and zeta subunits contain a conserved cytoplasmic motif, termed the immunoglobulin gene tyrosine activation motif, which contains a pair of YXXL sequences. The tyrosine residues within these YXXL sequences have been shown to be required for transduction of a phagocytic signal. We have previously reported that the gamma subunit of the type IIIA Fc gamma receptor (Fc gamma RIIIA) is approximately 6 times more efficient in mediating phagocytosis than the zeta subunit of Fc gamma RIIIA. By exchanging regions of the cytoplasmic domains of the homologous gamma and zeta chains, we observed that the cytoplasmic area of the gamma chain bearing a pair of the conserved YXXL sequences is important in phagocytic signaling. Further specificity of phagocytic signaling is largely determined by the two internal XX amino acids in the YXXL sequences. In contrast, the flanking amino acids of the YXXL sequences including the seven intervening amino acids between the two YXXL sequences do not significantly affect the phagocytic signal. Furthermore, the protein-tyrosine kinase Syk, but not the related kinase ZAP-70, stimulated Fc gamma RIIIA-mediated phagocytosis. ZAP-70, however, increased phagocytosis when coexpressed with the Src family kinase Fyn. These data demonstrate the importance of the two specific amino acids within the gamma subunit YXXL cytoplasmic sequences in phagocytic signaling and explain the difference in phagocytic efficiency of the gamma and zeta chains. These results indicate the importance of Syk in Fc gamma RIIIA-mediated phagocytosis and demonstrate that ZAP-70 and syk differ in their requirement for a Src-related kinase in signal transduction.