31 resultados para density dependent thinning


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The epsilon 4 allele of apolipoprotein E (apoE) is a major risk factor for Alzheimer disease, suggesting that apoE may directly influence neurons in the aging brain. Recent data suggest that apoE-containing lipoproteins can influence neurite outgrowth in an isoform-specific fashion. The neuronal mediators of apoE effects have not been clarified. We show here that in a central nervous system-derived neuronal cell line, apoE3 but not apoE4 increases neurite extension. The effect of apoE3 was blocked at low nanomolar concentrations by purified 39-kDa protein that regulates ligand binding to the low density lipoprotein receptor-related protein (LRP). Anti-LRP antibody also completely abolished the neurite-promoting effect of apoE3. Understanding isoform-specific cell biological processes mediated by apoE-LRP interactions in central nervous system neurons may provide insight into Alzheimer disease pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor that has been demonstrated to regulate fat cell development and glucose homeostasis. PPARγ is also expressed in a subset of macrophages and negatively regulates the expression of several proinflammatory genes in response to natural and synthetic ligands. We here demonstrate that PPARγ is expressed in macrophage foam cells of human atherosclerotic lesions, in a pattern that is highly correlated with that of oxidation-specific epitopes. Oxidized low density lipoprotein (oxLDL) and macrophage colony-stimulating factor, which are known to be present in atherosclerotic lesions, stimulated PPARγ expression in primary macrophages and monocytic cell lines. PPARγ mRNA expression was also induced in primary macrophages and THP-1 monocytic leukemia cells by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Inhibition of protein kinase C blocked the induction of PPARγ expression by TPA, but not by oxLDL, suggesting that more than one signaling pathway regulates PPARγ expression in macrophages. TPA induced the expression of PPARγ in RAW 264.7 macrophages by increasing transcription from the PPARγ1 and PPARγ3 promoters. In concert, these observations provide insights into the regulation of PPARγ expression in activated macrophages and raise the possibility that PPARγ ligands may influence the progression of atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced glycation end products (AGEs) are thought to contribute to the abnormal lipoprotein profiles and increased risk of cardiovascular disease of patients with diabetes and renal failure, in part by preventing apolipoprotein B (apoB)-mediated cellular uptake of low density lipoproteins (LDL) by LDL receptors (LDLr). It has been proposed that AGE modification at one site in apoB, almost 1,800 residues from the putative apoB LDLr-binding domain, may be sufficient to induce an apoB conformational change that prevents binding to the LDLr. To further explore this hypothesis, we used 29 anti-human apoB mAbs to identify other potential sites on apoB that may be modified by in vitro advanced glycation of LDL. Glycation of LDL caused a time-dependent decrease in its ability to bind to the LDLr and in the immunoreactivity of six distinct apoB epitopes, including two that flank the apoB LDLr-binding domain. ApoB appears to be modified at multiple sites by these criteria, as the loss of glycation-sensitive epitopes was detected on both native glycated LDL and denatured, delipidated glycated apoB. Moreover, residues directly within the putative apoB LDLr-binding site are not apparently modified in glycated LDL. We propose that the inability of LDL modified by AGEs to bind to the LDLr is caused by modification of residues adjacent to the putative LDLr-binding site that were undetected by previous immunochemical studies. AGE modification either eliminates the direct participation of the residues in LDLr binding or indirectly alters the conformation of the apoB LDLr-binding site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, there is a limited understanding of the factors that influence the localization and density of individual synapses in the central nervous system. Here we have studied the effects of activity on synapse formation between hippocampal dentate granule cells and CA3 pyramidal neurons in culture, taking advantage of FM1–43 as a fluorescent marker of synaptic boutons. We observed an early tendency for synapses to group together, quickly followed by the appearance of synaptic clusters on dendritic processes. These events were strongly influenced by N-methyl-d-aspartic acid receptor- and cyclic AMP-dependent signaling. The microstructure and localization of the synaptic clusters resembled that found in hippocampus, at mossy fiber synapses of stratum lucidum. Activity-dependent clustering of synapses represents a means for synaptic targeting that might contribute to synaptic organization in the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major contribution of this paper is the finding of a glycolytic source of ATP in the isolated postsynaptic density (PSD). The enzymes involved in the generation of ATP are glyceraldehyde-3-phosphate dehydrogenase (G3PD) and phosphoglycerate kinase (PGK). Lactate dehydrogenase (LDH) is available for the regeneration of NAD+, as well as aldolase for the regeneration of glyceraldehyde-3-phosphate (G3P). The ATP was shown to be used by the PSD Ca2+/calmodulin-dependent protein kinase and can probably be used by two other PSD kinases, protein kinase A and protein kinase C. We confirmed by immunocytochemistry the presence of G3PD in the PSD and its binding to actin. Also present in the PSD is NO synthase, the source of NO. NO increases the binding of NAD, a G3PD cofactor, to G3PD and inhibits its activity as also found by others. The increased NAD binding resulted in an increase in G3PD binding to actin. We confirmed the autophosphorylation of G3PD by ATP, and further found that this procedure also increased the binding of G3PD to actin. ATP and NO are connected in that the formation of NO from NOS at the PSD resulted, in the presence of NAD, in a decrease of ATP formation in the PSD. In the discussion, we raise the possible roles of G3PD and of ATP in protein synthesis at the PSD, the regulation by NO, as well as the overall regulatory role of the PSD complex in synaptic transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 67-amino acid cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor (CD-MPR) contains a signal(s) that prevents the receptor from entering lysosomes where it would be degraded. To identify the key residues required for proper endosomal sorting, we analyzed the intracellular distribution of mutant forms of the receptor by Percoll density gradients. A receptor with a Trp19 → Ala substitution in the cytoplasmic tail was highly missorted to lysosomes whereas receptors with either Phe18 → Ala or Phe13 → Ala mutations were partially defective in avoiding transport to lysosomes. Analysis of double and triple mutants confirmed the key role of Trp19 for sorting of the CD-MPR in endosomes, with Phe18, Phe13, and several neighboring residues contributing to this function. The addition of the Phe18-Trp19 motif of the CD-MPR to the cytoplasmic tail of the lysosomal membrane protein Lamp1 was sufficient to partially impair its delivery to lysosomes. Replacing Phe18 and Trp19 with other aromatic amino acids did not impair endosomal sorting of the CD-MPR, indicating that two aromatic residues located at these positions are sufficient to prevent the receptor from trafficking to lysosomes. However, alterations in the spacing of the diaromatic amino acid sequence relative to the transmembrane domain resulted in receptor accumulation in lysosomes. These findings indicate that the endosomal sorting of the CD-MPR depends on the correct presentation of a diaromatic amino acid-containing motif in its cytoplasmic tail. Because a diaromatic amino acid sequence is also present in the cytoplasmic tail of other receptors known to be internalized from the plasma membrane, this feature may prove to be a general determinant for endosomal sorting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been shown previously that the binding of oxidized low-density lipoprotein (OxLDL) to resident mouse peritoneal macrophages can be inhibited (up to 70%) by the apoprotein B (apoB) isolated from OxLDL, suggesting that macrophage recognition of OxLDL is primarily dependent on its modified protein moiety. However, recent experiments have demonstrated that the lipids isolated from OxLDL and reconstituted into a microemulsion can also strongly inhibit uptake of OxLDL (up to 80%). The present studies show that lipid microemulsions prepared from OxLDL bind to thioglycollate-elicited macrophages at 4°C in a saturable fashion and inhibit the binding of intact OxLDL and also of the apoB from OxLDL. Reciprocally, the binding of the OxLDL-lipid microemulsions was strongly inhibited by intact OxLDL. A conjugate of synthetic 1-palmitoyl 2(5-oxovaleroyl) phosphatidylcholine (an oxidation product of 1-palmitoyl 2-arachidonoyl phosphatidylcholine) with serum albumin, shown previously to inhibit macrophage binding of intact OxLDL, also inhibited the binding of both the apoprotein and the lipid microemulsions prepared from OxLDL. Finally, a monoclonal antibody against oxidized phospholipids, one that inhibits binding of intact OxLDL to macrophages, also inhibited the binding of both the resolubilized apoB and the lipid microemulsions prepared from OxLDL. These studies support the conclusions that: (i) at least some of the macrophage receptors for oxidized LDL can recognize both the lipid and the protein moieties; and (ii) oxidized phospholipids, in the lipid phase of the lipoprotein and/or covalently linked to the apoB of OxLDL, likely play a role in that recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The class B, type I scavenger receptor, SR-BI, binds high density lipoprotein (HDL) and mediates the selective uptake of HDL cholesteryl ester (CE) by cultured transfected cells. The high levels of SR-BI expression in steroidogenic cells in vivo and its regulation by tropic hormones provides support for the hypothesis that SR-BI is a physiologically relevant HDL receptor that supplies substrate cholesterol for steroid hormone synthesis. This hypothesis was tested by determining the ability of antibody directed against murine (m) SR-BI to inhibit the selective uptake of HDL CE in Y1-BS1 adrenocortical cells. Anti-mSR-BI IgG inhibited HDL CE-selective uptake by 70% and cell association of HDL particles by 50% in a dose-dependent manner. The secretion of [3H]steroids derived from HDL containing [3H]CE was inhibited by 78% by anti-mSR-BI IgG. These results establish mSR-BI as the major route for the selective uptake of HDL CE and the delivery of HDL cholesterol to the steroidogenic pathway in cultured mouse adrenal cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quantitative analysis with immunogold-electron microscopy using a single-affinity-purified anti-NADH-glutamate synthase (GOGAT) immunoglobulin G (IgG) as the primary antibody showed that the NADH-GOGAT protein was present in various forms of plastids in the cells of the epidermis and exodermis, in the cortex parenchyma, and in the vascular parenchyma of root tips (<10 mm) of rice (Oryza sativa) seedlings supplied with 1 mm NH4+ for 24 h. The values of the mean immunolabeling density of plastids were almost equal among these different cell types in the roots. However, the number of plastids per individual cell type was not identical, and some parts of the cells in the epidermis and exodermis contained large numbers of plastids that were heavily immunolabeled. Although there was an indication of labeling in the mitochondria using the single-affinity-purified anti-NADH-GOGAT IgG, this was not confirmed when a twice-affinity-purified IgG was used, indicating an exclusively plastidial location of the NADH-GOGAT protein in rice roots. These results, together with previous work from our laboratory (K. Ishiyama, T. Hayakawa, and T. Yamaya [1998] Planta 204: 288–294), suggest that the assimilation of exogeneously supplied NH4+ ions is primarily via the cytosolic glutamine synthetase/plastidial NADH-GOGAT cycle in specific regions of the epidermis and exodermis in rice roots. We also discuss the role of the NADH-GOGAT protein in vascular parenchyma cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ATP-gated P2X2 receptors are widely expressed in neurons, but the cellular effects of receptor activation are unclear. We engineered functional green fluorescent protein (GFP)-tagged P2X2 receptors and expressed them in embryonic hippocampal neurons, and report an approach to determining functional and total receptor pool sizes in living cells. ATP application to dendrites caused receptor redistribution and the formation of varicose hot spots of higher P2X2-GFP receptor density. Redistribution in dendrites was accompanied by an activation-dependent enhancement of the ATP-evoked current. Substate-specific mutant T18A P2X2-GFP receptors showed no redistribution or activation-dependent enhancement of the ATP-evoked current. Thus fluorescent P2X2-GFP receptors function normally, can be quantified, and reveal the dynamics of P2X2 receptor distribution on the seconds time scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In prostanoid biosynthesis, the first two steps are catalyzed by cyclooxygenases (COX). In mice and humans, deregulated expression of COX-2, but not of COX-1, is characteristic of epithelial tumors, including squamous cell carcinomas of skin. To explore the function of COX-2 in epidermis, a keratin 5 promoter was used to direct COX-2 expression to the basal cells of interfollicular epidermis and the pilosebaceous appendage of transgenic mouse skin. COX-2 overexpression in the expected locations, resulting in increased prostaglandin levels in epidermis and plasma, correlated with a pronounced skin phenotype. Heterozygous transgenic mice exhibited a reduced hair follicle density. Moreover, postnatally hair follicle morphogenesis and thinning of interfollicular dorsal epidermis were delayed. Adult transgenics showed a body-site-dependent sparse coat of greasy hair, the latter caused by sebaceous gland hyperplasia and increased epicutaneous sebum levels. In tail skin, hyperplasia of scale epidermis reflecting an increased number of viable and cornified cell layers was observed. Hyperplasia was a result of a disturbed program of epidermal differentiation rather than an increased proliferation rate, as reflected by the strong suppression of keratin 10, involucrin, and loricrin expression in suprabasal cells. Further pathological signs were loss of cell polarity, mainly of basal keratinocytes, epidermal invaginations into the dermis, and formation of horn perls. Invaginating hyperplastic lobes were surrounded by CD31-positive vessels. These results demonstrate a causal relationship between transgenic COX-2 expression in basal keratinocytes and epidermal hyperplasia as well as dysplastic features at discrete body sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the interactions between cytokinin, sugar repression, and light in the senescence-related decline in photosynthetic enzymes of leaves. In transgenic tobacco (Nicotiana tabacum) plants that induce the production of cytokinin in senescing tissue, the age-dependent decline in NADH-dependent hydroxypyruvate reductase (HPR), ribulose-1,5-bisphosphate carboxylase/oxygenase, and other enzymes involved in photosynthetic metabolism was delayed but not prevented. Glucose (Glc) and fructose contents increased with leaf age in wild-type tobacco and, to a greater extent, in transgenic tobacco. To study whether sugar accumulation in senescing leaves can counteract the effect of cytokinin on senescence, discs of wild-type leaves were incubated with Glc and cytokinin solutions. The photorespiratory enzyme HPR declined rapidly in the presence of 20 mm Glc, especially at very low photon flux density. Although HPR protein was increased in the presence of cytokinin, cytokinin did not prevent the Glc-dependent decline. Illumination at moderate photon flux density resulted in the rapid synthesis of HPR and partially prevented the negative effect of Glc. Similar results were obtained for the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase. It is concluded that sugars, cytokinin, and light interact during senescence by influencing the decline in proteins involved in photosynthetic metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significantly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High density lipoproteins (HDLs) play a role in two processes that include the amelioration of atheroma formation and the centripetal flow of cholesterol from the extrahepatic organs to the liver. This study tests the hypothesis that the flow of sterol from the peripheral organs to the liver is dependent upon circulating HDL concentrations. Transgenic C57BL/6 mice were used that expressed variable amounts of simian cholesteryl ester-transfer protein (CETP). The rate of centripetal cholesterol flux was quantitated as the sum of the rates of cholesterol synthesis and low density lipoprotein-cholesterol uptake in the extrahepatic tissues. Steady-state concentrations of cholesterol carried in HDL (HDL-C) varied from 59 to 15 mg/dl and those of apolipoprotein AI from 138 to 65 mg/dl between the control mice (CETPc) and those maximally expressing the transfer protein (CETP+). There was no difference in the size of the extrahepatic cholesterol pools in the CETPc and CETP+ animals. Similarly, the rates of cholesterol synthesis (83 and 80 mg/day per kg, respectively) and cholesterol carried in low density lipoprotein uptake (4 and 3 mg/day per kg, respectively) were virtually identical in the two groups. Thus, under circumstances where the steady-state concentration of HDL-C varied 4-fold, the centripetal flux of cholesterol from the peripheral organs to the liver was essentially constant at approximately 87 mg/day per kg. These studies demonstrate that neither the concentration of HDL-C or apolipoprotein AI nor the level of CETP activity dictates the magnitude of centripetal cholesterol flux from the extrahepatic organs to the liver, at least in the mouse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenoviral vectors are widely used as highly efficient gene transfer vehicles in a variety of biological research strategies including human gene therapy. One of the limitations of the currently available adenoviral vector system is the presence of the majority of the viral genome in the vector, resulting in leaky expression of viral genes particularly at high multiplicity of infection and limited cloning capacity of exogenous sequences. As a first step to overcome this problem, we attempted to rescue a defective human adenovirus serotype 5 DNA, which had an essential region of the viral genome (L1, L2, VAI + II, pTP) deleted and replaced with an indicator gene. In the presence of wild-type adenovirus as a helper, this DNA was packaged and propagated as transducing viral particles. After several rounds of amplification, the titer of the recombinant virus reached at least 4 x 10(6) transducing particles per ml. The recombinant virus could be partially purified from the helper virus by CsCl equilibrium density-gradient centrifugation. The structure of the recombinant virus around the marker gene remained intact after serial propagation, while the pBR sequence inserted in the E1 region was deleted from the recombinant virus. Our results suggest that it should be possible to develop a helper-dependent adenoviral vector, which does not encode any viral proteins, as an alternative to the currently available adenoviral vector systems.