20 resultados para cyanobacterial blooms
Resumo:
To optimize photosynthesis, cyanobacteria move toward or away from a light source by a process known as phototaxis. Phototactic movement of the cyanobacterium Synechocystis PCC6803 is a surface-dependent phenomenon that requires type IV pili, cellular appendages implicated in twitching and social motility in a range of bacteria. To elucidate regulation of cyanobacterial motility, we generated transposon-tagged mutants with aberrant phototaxis; mutants were either nonmotile or exhibited an “inverted motility response” (negative phototaxis) relative to wild-type cells. Several mutants contained transposons in genes similar to those involved in bacterial chemotaxis. Synechocystis PCC6803 has three loci with chemotaxis-like genes, of which two, Tax1 and Tax3, are involved in phototaxis. Transposons interrupting the Tax1 locus yielded mutants that exhibited an inverted motility response, suggesting that this locus is involved in controlling positive phototaxis. However, a strain null for taxAY1 was nonmotile and hyperpiliated. Interestingly, whereas the C-terminal region of the TaxD1 polypeptide is similar to the signaling domain of enteric methyl-accepting chemoreceptor proteins, the N terminus has two domains resembling chromophore-binding domains of phytochrome, a photoreceptor in plants. Hence, TaxD1 may play a role in perceiving the light stimulus. Mutants in the Tax3 locus are nonmotile and do not make type IV pili. These findings establish links between chemotaxis-like regulatory elements and type IV pilus-mediated phototaxis.
Resumo:
A cDNA of pea (Pisum sativum L.) RbcS 3A, encoding a small subunit protein (S) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), has been expressed in Arabidopsis thaliana under control of the cauliflower mosaic virus 35S promoter, and the transcript and mature S protein were detected. Specific antibodies revealed two protein spots for the four Arabidopsis S and one additional spot for pea S. Pea S in chimeric Rubisco amounted to 15 to 18% of all S, as judged by separation on two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels from partially purified enzyme preparations and quantitation of silver-stained protein spots. The chimeric enzyme had 11 ± 1% fewer carbamylated sites and a 11 ± 1% lower carboxylase activity than wild-type Arabidopsis Rubisco. Whereas pea S expression, preprotein transport, and processing and assembly resulted in a stable holoenzyme, the chimeric enzyme was reproducibly catalytically less efficient. We suggest that the presence of, on average, one foreign S per holoenzyme is responsible for the altered activity. In addition, higher-plant Rubisco, unlike the cyanobacterial enzyme, seems to have evolved species-specific interactions between S and the large subunit protein that are involved in carbamylation of the active site.
Resumo:
The induction of a high-affinity state of the CO2-concentration mechanism was investigated in two cyanobacterial species, Synechococcus sp. strain PCC7002 and Synechococcus sp. strain PCC7942. Cells grown at high CO2 concentrations were resuspended in low-CO2 buffer and illuminated in the presence of carbonic anhydrase for 4 to 10 min until the inorganic C compensation point was reached. Thereafter, more than 95% of a high-affinity CO2-concentration mechanism was induced in both species. Mass-spectrometric analysis of CO2 and HCO3− fluxes indicated that only the affinity of HCO3− transport increased during the fast-induction period, whereas maximum transport activities were not affected. The kinetic characteristics of CO2 uptake remained unchanged. Fast induction of high-affinity HCO3− transport was not inhibited by chloramphenicol, cantharidin, or okadaic acid. In contrast, fast induction of high-affinity HCO3− transport did not occur in the presence of K252a, staurosporine, or genistein, which are known inhibitors of protein kinases. These results show that induction of high-affinity HCO3− transport can occur within minutes of exposure to low-inorganic-C conditions and that fast induction may involve posttranslational phosphorylation of existing proteins rather than de novo synthesis of new protein components.
Resumo:
Cyanobacteria are important contributors to global photosynthesis in both marine and terrestrial environments. Quantitative data are presented on UV-B-induced damage to the major cyanobacterial photosynthetic light harvesting complex, the phycobilisome, and to each of its constituent phycobiliproteins. The photodestruction quantum yield, phi295 nm, for the phycobiliproteins is high (approximately 10(-3), as compared with approximately 10(-7) for visible light). Energy transfer on a picosecond time scale does not compete with photodestruction. Photodamage to phycobilisomes in vitro and in living cells is amplified by causing dissociation and loss of function of the complex. In photosynthetic organisms, UV-B damage to light-harvesting complexes may significantly exceed that to DNA.
Resumo:
We have cloned the gene for a putative chloroplast RNA polymerase sigma factor from the unicellular rhodophyte Cyanidium caldarium. This gene contains an open reading frame encoding a protein of 609 amino acids with domains highly homologous to all four conserved regions found in bacterial and cyanobacterial sigma 70-type subunits. When Southern blots of genomic DNA were hybridized to the "rpoD box" oligonucleotide probe, up to six hybridizing hands were observed. Transcripts of the sigma factor gene were undetectable in RNA from dark-grown cells but were abundant in the poly(A)+ fraction of RNA from illuminated cells. The sigma factor gene was expressed in Escherichia coli, and antibodies against the expressed sigma factor fusion protein cross-reacted with a 55-kDa protein in partially purified chloroplast RNA polymerase. Antibodies directed against a cyanobacterial RNA polymerase sigma factor also cross-reacted with a 55-kDa protein in the same enzyme preparation. Immunoprecipitation experiments showed that this enzyme preparation contains proteins with the same molecular weights as the alpha, beta, beta', and beta" subunits of chloroplast RNA polymerase in higher plants. This study identifies a gene for a plastid RNA polymerase sigma factor and indicates that there may be a family of nuclear-encoded sigma factors that recognize promoters in subsets of plastid genes and regulate differential gene expression at the transcriptional level.