74 resultados para covalent


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism by which cotransport proteins couple their substrates across cell membranes is not known. A commonly proposed model is that cotransport results from ligand-induced conformational transitions that change the accessibility of ligand-binding sites from one side of the membrane to the other. To test this model, we have measured the accessibility of covalent probes to a cysteine residue (Q457C) placed in the putative sugar-translocation domain of the Na+/glucose cotransporter (SGLT1). The mutant protein Q457C was able to transport sugar, but transport was abolished after alkylation by methanethiosulfonate reagents. Alkylation blocked sugar translocation but not sugar binding. Accessibility of Q457C to alkylating reagents required external Na+ and was blocked by external sugar and phlorizin. The voltage dependence of accessibility was directly correlated with the presteady–state charge movement of SGLT1. Voltage-jump experiments with rhodamine-6-maleimide-labeled Q457C showed that the time course and level of changes in fluorescence closely followed the presteady–state charge movement. We conclude that conformational changes are responsible for the coupling of Na+ and sugar transport and that Q457 plays a critical role in sugar translocation by SGLT1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondria have been proposed to possess base excision repair processes to correct oxidative damage to the mitochondrial genome. As the only DNA polymerase (pol) present in mitochondria, pol γ is necessarily implicated in such processes. Therefore, we tested the ability of the catalytic subunit of human pol γ to participate in uracil-provoked base excision repair reconstituted in vitro with purified components. Subsequent to actions of uracil-DNA glycosylase and apurinic/apyrimidinic endonuclease, human pol γ was able to fill a single nucleotide gap in the presence of a 5′ terminal deoxyribose phosphate (dRP) flap. We report here that the catalytic subunit of human pol γ catalyzes release of the dRP residue from incised apurinic/apyrimidinic sites to produce a substrate for DNA ligase. The heat sensitivity of this activity suggests the dRP lyase function requires a three-dimensional protein structure. The dRP lyase activity does not require divalent metal ions, and the ability to trap covalent enzyme-DNA complexes with NaBH4 strongly implicates a Schiff base intermediate in a β-elimination reaction mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The replication system of bacteriophage T4 uses a trimeric ring-shaped processivity clamp (gp45) to tether the replication polymerase (gp43) to the template-primer DNA. This ring is placed onto the DNA by an ATPase-driven clamp-loading complex (gp44/62) where it then transfers, in closed form, to the polymerase. It generally has been assumed that one of the functions of the loading machinery is to open the clamp to place it around the DNA. However, the mechanism by which this occurs has not been fully defined. In this study we design and characterize a double-mutant gp45 protein that contains pairs of cysteine residues located at each monomer-monomer interface of the trimeric clamp. This mutant protein is functionally equivalent to wild-type gp45. However, when all three monomer-monomer interfaces are tethered by covalent crosslinks formed (reversibly or irreversibly) between the cysteine pairs these closed clamps can no longer be loaded onto the DNA nor onto the polymerase, effectively eliminating processive strand-displacement DNA synthesis. Analysis of the individual steps of the clamp-loading process shows that the ATPase-dependent interactions between the clamp and the clamp loader that precede DNA binding are hyperstimulated by the covalently crosslinked ring, suggesting that binding of the closed ring induces a futile, ATP-driven, ring-opening cycle. These findings and others permit further characterization and ordering of the steps involved in the T4 clamp-loading process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An in vitro system to study the mechanism of site-specific integration of adeno-associated virus (AAV) was developed. This system is based on two substrates, a linear or circular AAV donor and a circular acceptor containing the preintegration locus AAVS1. In the presence of HeLa extract and the His-Tag-purified Rep68 protein, specific covalent junctions between AAV and AAVS1 were formed and detected by PCR. The majority of the junctions were located within the Rep binding site of both the AAV and the AAVS1 substrates, underlining the involvement of the Rep protein. A limited amount of replication and the presence of nuclear factors promoted the efficiency of the reaction. The process was ATP-dependent, indicating that the helicase activity of Rep may be important in the formation of the junctions. According to current models of integration, the formation of the junctions would represent a first step in the process of AAV integration. This step could be crucial for the site specificity of the recombination event that leads to the integration of AAV into human chromosome 19 in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The m7GpppN cap structure of eukaryotic mRNA is formed cotranscriptionally by the sequential action of three enzymes: RNA triphosphatase, RNA guanylyltransferase, and RNA (guanine-7)-methyltransferase. A multifunctional polypeptide containing all three active sites is encoded by vaccinia virus. In contrast, fungi and Chlorella virus encode monofunctional guanylyltransferase polypeptides that lack triphosphatase and methyltransferase activities. Transguanylylation is a two-stage reaction involving a covalent enzyme-GMP intermediate. The active site is composed of six protein motifs that are conserved in order and spacing among yeast and DNA virus capping enzymes. We performed a structure–function analysis of the six motifs by targeted mutagenesis of Ceg1, the Saccharomyces cerevisiae guanylyltransferase. Essential acidic, basic, and aromatic functional groups were identified. The structural basis for covalent catalysis was illuminated by comparing the mutational results with the crystal structure of the Chlorella virus capping enzyme. The results also allowed us to identify the capping enzyme of Caenorhabditis elegans. The 573-amino acid nematode protein consists of a C-terminal guanylyltransferase domain, which is homologous to Ceg1 and is strictly conserved with respect to all 16 amino acids that are essential for Ceg1 function, and an N-terminal phosphatase domain that bears no resemblance to the vaccinia triphosphatase domain but, instead, has strong similarity to the superfamily of protein phosphatases that act via a covalent phosphocysteine intermediate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Circulating autoantibodies to phospholipids (aPLs), such as cardiolipin (CL), are found in patients with antiphospholipid antibody syndrome (APS). We recently demonstrated that many aPLs bound to CL only after it had been oxidized (OxCL), but not to a reduced CL analogue that could not undergo oxidation. We now show that the neoepitopes recognized by some aPLs consist of adducts formed between breakdown products of oxidized phospholipid and associated proteins, such as β2 glycoprotein 1 (β2GP1). Addition of human β2GP1, polylysine, native low-density lipoprotein, or apolipoprotein AI to OxCL-coated wells increased the anticardiolipin antibody (aCL) binding from APS sera that first had been diluted so that no aCL binding to OxCL could be detected. No increase in aCL binding was observed when these proteins were added to wells coated with reduced CL. The ability of β2GP1, polylysine, or low-density lipoprotein to be a “cofactor” for aCL binding to OxCL was greatly reduced when the proteins were methylated. Incubation of β2GP1 with oxidized 1-palmitoyl-2-linoleyl-[1-14C]-phosphatidylcholine (PC), but not with dipalmitoyl-[1-14C]-PC, led to formation of covalent adducts with β2GP1 recognized by APS sera. These data suggest that the reactive groups of OxCL, such as aldehydes generated during the decomposition of oxidized polyunsaturated fatty acids, form covalent adducts with β2GP1 (and other proteins) and that these are epitopes for aCLs. Knowledge that the epitopes recognized by many aPLs are adducts of oxidized phospholipid and associated proteins, including β2GP1, may give new insights into the pathogenic events underlying the clinical manifestations of APS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein prenyltransferases catalyze the covalent attachment of isoprenoid lipids (farnesyl or geranylgeranyl) to a cysteine near the C terminus of their substrates. This study explored the specificity determinants for interactions between the farnesyltransferase of Saccharomyces cerevisiae and its protein substrates. A series of substitutions at amino acid 149 of the farnesyltransferase β-subunit were tested in combination with a series of substitutions at the C-terminal amino acid of CaaX protein substrates Ras2p and a-factor. Efficient prenylation was observed when oppositely charged amino acids were present at amino acid 149 of the yeast farnesyltransferase β-subunit and the C-terminal amino acid of the CaaX protein substrate, but not when like charges were present at these positions. This evidence for electrostatic interaction between amino acid 149 and the C-terminal amino acid of CaaX protein substrates leads to the prediction that the C-terminal amino acid of the protein substrate binds near amino acid 149 of the yeast farnesyltransferase β-subunit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The link between recognition and replication is fundamental to the operation of the immune system. In recent years, modeling this process in a format of phage-display combinatorial libraries has afforded a powerful tool for obtaining valuable antibodies. However, the ability to readily select and isolate rare catalysts would expand the scope of library technology. A technique in which phage infection controlled the link between recognition and replication was applied to show that chemistry is a selectable process. An antibody that operated by covalent catalysis to form an acyl intermediate restored phage infectivity and allowed selection from a library in which the catalyst constituted 1 in 105 members. Three different selection approaches were examined for their convenience and generality. Incorporating these protocols together with well known affinity labels and mechanism-based inactivators should allow the procurement of a wide range of novel catalytic antibodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic nature of low-barrier hydrogen bonds (LBHBs) in enzymatic reactions is discussed based on combined low temperature neutron and x-ray diffraction experiments and on high level ab initio calculations by using the model substrate benzoylacetone. This molecule has a LBHB, as the intramolecular hydrogen bond is described by a double-well potential with a small barrier for hydrogen transfer. From an “atoms in molecules” analysis of the electron density, it is found that the hydrogen atom is stabilized by covalent bonds to both oxygens. Large atomic partial charges on the hydrogen-bonded atoms are found experimentally and theoretically. Therefore, the hydrogen bond gains stabilization from both covalency and from the normal electrostatic interactions found for long, weak hydrogen bonds. Based on comparisons with other systems having short-strong hydrogen bonds or LBHBs, it is proposed that all short-strong and LBHB systems possess similar electronic features of the hydrogen-bonded region, namely polar covalent bonds between the hydrogen atom and both heteroatoms in question.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The x-ray crystal structures of trans-cinnamoyl–subtilisin, an acyl-enzyme covalent intermediate of the serine protease subtilisin Carlsberg, have been determined to 2.2-Å resolution in anhydrous acetonitrile and in water. The cinnamoyl–subtilisin structures are virtually identical in the two solvents. In addition, their enzyme portions are nearly indistinguishable from previously determined structures of the free enzyme in acetonitrile and in water; thus, acylation in either aqueous or nonaqueous solvent causes no appreciable conformational changes. However, the locations of bound solvent molecules in the active site of the acyl- and free enzyme forms in acetonitrile and in water are distinct. Such differences in the active site solvation may contribute to the observed variations in enzymatic activities. On prolonged exposure to organic solvent or removal of interstitial solvent from the crystal lattice, the channels within enzyme crystals are shown to collapse, leading to a drop in the number of active sites accessible to the substrate. The mechanistic and preparative implications of our findings for enzymatic catalysis in organic solvents are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Translesion synthesis at replication-blocking lesions requires the induction of proteins that are controlled by the SOS system in Escherichia coli. Of the proteins identified so far, UmuD′, UmuC, and RecA* were shown to facilitate replication across UV-light-induced lesions, yielding both error-free and mutagenic translesion-synthesis products. Similar to UV lesions, N-2-acetylaminofluorene (AAF), a chemical carcinogen that forms covalent adducts at the C8 position of guanine residues, is a strong replication-blocking lesion. Frameshift mutations are induced efficiently by AAF adducts when located within short repetitive sequences in a two-step mechanism; AAF adducts incorporate a cytosine across from the lesion and then form a primer-template misaligned intermediate that, upon elongation, yields frameshift mutations. Recently, we have shown that although elongation from the nonslipped intermediate depends on functional umuDC+ gene products, elongation from the slipped intermediate is umuDC+-independent but requires another, as yet biochemically uncharacterized, SOS function. We now show that in DNA Polymerase III-proofreading mutant strains (dnaQ49 and mutD5 strains), elongation from the slipped intermediate is highly efficient in the absence of SOS induction—in contrast to elongation from the nonslipped intermediate, which still requires UmuDC functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a number of clinical circumstances it would be desirable to artificially conceal cellular antigenic determinants to permit survival of heterologous donor cells. A case in point is the problem encountered in transfusions of patients with rare blood types or chronically transfused patients who become allosensitized to minor blood group determinants. We have tested the possibility that chemical modification of the red blood cell (RBC) membrane might serve to occlude antigenic determinants, thereby minimizing transfusion reactions. To this end, we have covalently bound methoxy(polyethylene glycol) (mPEG) to the surface of mammalian RBC via cyanuric chloride coupling. Human RBC treated with this technique lose ABO blood group reactivity as assessed by solution–phase antisera agglutination. In accord with this, we also find a profound decrease in anti-blood group antibody binding. Furthermore, whereas human monocytes avidly phagocytose untreated sheep RBC, mPEG-derivatized sheep RBC are ineffectively phagocytosed. Surprisingly, human and mouse RBC appear unaffected by this covalent modification of the cell membrane. Thus, mPEG-treated RBC are morphologically normal, have normal osmotic fragility, and mPEG-derivatized murine RBC have normal in vivo survival, even following repeated infusions. Finally, in preliminary experiments, mPEG-modified sheep RBC intraperitoneally transfused into mice show significantly improved (up to 360-fold) survival when compared with untreated sheep RBC. We speculate that similar chemical camouflage of intact cells may have significant clinical applications in both transfusion (e.g., allosensitization and autoimmune hemolytic disease) and transplantation (e.g., endothelial cells and pancreatic β cells) medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lysyl oxidase (EC 1.4.3.13) oxidizes peptidyl lysine to peptidyl aldehyde residues within collagen and elastin, thus initiating formation of the covalent cross-linkages that insolubilize these extracellular proteins. Recent findings raise the possibility that this enzyme may also function intracellularly. The present study provides evidence by immunocytochemical confocal microscopy, Western blot analysis, enzyme assays, and chemical analyses for lysyl oxidase reaction products that this enzyme is present and active within rat vascular smooth muscle cell nuclei. Confocal microscopy indicates its presence within nuclei of 3T3 fibroblasts, as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electron density map of the small ribosomal subunit from Thermus thermophilus, constructed at 4.5 Å resolution, shows the recognizable morphology of this particle, as well as structural features that were interpreted as ribosomal RNA and proteins. Unbiased assignments, carried out by quantitative covalent binding of heavy atom compounds at predetermined sites, led to the localization of the surface of the ribosomal protein S13 at a position compatible with previous assignments, whereas the surface of S11 was localized at a distance of about twice its diameter from the site suggested for its center by neutron scattering. Proteins S5 and S7, whose structures have been determined crystallographically, were visually placed in the map with no alterations in their conformations. Regions suitable to host the fold of protein S15 were detected in several positions, all at a significant distance from the location of this protein in the neutron scattering map. Targeting the 16S RNA region, where mRNA docks to allow the formation of the initiation complex by a mercurated mRNA analog, led to the characterization of its vicinity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

tRNA pseudouridine synthase I (ΨSI) catalyzes the conversion of uridine to Ψ at positions 38, 39, and/or 40 in the anticodon loop of tRNAs. ΨSI forms a covalent adduct with 5-fluorouracil (FUra)-tRNA (tRNAPhe containing FUra in place of Ura) to form a putative analog of a steady-state intermediate in the normal reaction pathway. Previously, we proposed that a conserved aspartate of the enzyme serves as a nucleophilic catalyst in both the normal enzyme reaction and in the formation of a covalent complex with FUra-tRNA. The covalent adduct between FUra-tRNA and ΨSI was isolated and disrupted by hydrolysis and the FUra-tRNA was recovered. The target FU39 of the recovered FUra-tRNA was modified by the addition of water across the 5,6-double bond of the pyrimidine base to form 5,6-dihydro-6-hydroxy-5-fluorouridine. We deduced that the conserved aspartate of the enzyme adds to the 6-position of the target FUra to form a stable covalent adduct, which can undergo O-acyl hydrolytic cleavage to form the observed product. Assuming that an analogous covalent complex is formed in the normal reaction, we have deduced a complete mechanism for ΨS.