17 resultados para corticosterone


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The orphan nuclear receptor steroidogenic factor 1 (SF-1) is expressed in the adrenal cortex and gonads and regulates the expression of several P450 steroid hydroxylases in vitro. We examined the role of SF-1 in the adrenal glands and gonads in vivo by a targeted disruption of the mouse SF-1 gene. All SF-1-deficient mice died shortly after delivery. Their adrenal glands and gonads were absent, and persistent Mullerian structures were found in all genotypic males. While serum levels of corticosterone in SF-1-deficient mice were diminished, levels of adrenocorticotropic hormone (ACTH) were elevated, consistent with intact pituitary corticotrophs. Intrauterine survival of SF-1-deficient mice appeared normal, and they had normal serum level of corticosterone and ACTH, probably reflecting transplacental passage of maternal steroids. We tested whether SF-1 is required for P450 side-chain-cleavage enzyme (P450scc) expression in the placenta, which expresses both SF-1 and P450scc, and found that in contrast to its strong activation of the P450scc gene promoter in vitro, the absence of SF-1 had no effect on P450scc mRNA levels in vivo. Although the region targeted by our disruption is shared by SF-1 and by embryonal long terminal repeat-binding protein (ELP), a hypothesized alternatively spliced product, we believe that the observed phenotype reflects absent SF-1 alone, as PCR analysis failed to detect ELP transcripts in any mouse tissue, and sequences corresponding to ELP are not conserved across species. These results confirm that SF-1 is an important regulator of adrenal and gonadal development, but its regulation of steroid hydroxylase expression in vivo remains to be established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immediate post-training, stereotactically guided, intraparenchymal administration of pregnenolone sulfate (PS) into the amygdala, septum, mammillary bodies, or caudate nucleus and of PS, dehydroepiandrosterone sulfate, and corticosterone into the hippocampus was performed in mice that had been weakly trained in a foot-shock active avoidance paradigm. Intrahippocampal injection of PS resulted in memory enhancement (ME) at a lower dose than was found with dehydroepiandrosterone sulfate and corticosterone. Intraamygdally administered PS was approximately 10(4) times more potent on a molar basis in producing ME than when PS was injected into the hippocampus and approximately 10(5) times more potent than when injected into the septum or mammillary bodies. ME did not occur on injection of PS into the caudate nucleus over the range of doses tested in the other brain structures. The finding that fewer than 150 molecules of PS significantly enhanced post-training memory processes when injected into the amygdala establishes PS as the most potent memory enhancer yet reported and the amygdala as the most sensitive brain region for ME by any substance yet tested.