61 resultados para complexity in spatiotemporal evolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most evolutionary studies of oceanic islands have focused on the Pacific Ocean. There are very few examples from the Atlantic archipelagos, especially Macaronesia, despite their unusual combination of features, including a close proximity to the continent, a broad range of geological ages, and a biota linked to a source area that existed in the Mediterranean basin before the late Tertiary. A chloroplast DNA (cpDNA) restriction site analysis of Argyranthemum (Asteraceae: Anthemideae), the largest endemic genus of plants of any volcanic archipelago in the Atlantic Ocean, was performed to examine patterns of plant evolution in Macaronesia. cpDNA data indicated that Argyranthemum is a monophyletic group that has speciated recently. The cpDNA tree showed a weak correlation with the current sectional classification and insular distribution. Two major cpDNA lineages were identified. One was restricted to northern archipelagos--e.g., Madeira, Desertas, and Selvagens--and the second comprised taxa endemic to the southern archipelago--e.g., the Canary Islands. The two major radiations identified in the Canaries are correlated with distinct ecological habitats; one is restricted to ecological zones under the influence of the northeastern trade winds and the other to regions that are not affected by these winds. The patterns of phylogenetic relationships in Argyranthemum indicate that interisland colonization between similar ecological zones is the main mechanism for establishing founder populations. This phenomenon, combined with rapid radiation into distinct ecological zones and interspecific hybridization, is the primary explanation for species diversification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hypocone, a cusp added to the primitively triangular upper molar teeth of therian mammals, has evolved convergently > 20 times among mammals during the Cenozoic. Acquisition of the hypocone itself involves little phenotypic change, but subsequent diversification of groups possessing the hypocone may be greatly enhanced. Our analysis of the Cenozoic mammalian radiations, including the Recent fauna, shows that high species diversity of mammals with hypocones and association of the hypocone with herbivory strongly support recognition of the hypocone as a key innovation that has allowed invasion of, and diversification within, herbivorous adaptive zones. In contrast, mammals lacking hypocones show no marked increase in species diversity during the Cenozoic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasingly, studies of genes and genomes are indicating that considerable horizontal transfer has occurred between prokaryotes. Extensive horizontal transfer has occurred for operational genes (those involved in housekeeping), whereas informational genes (those involved in transcription, translation, and related processes) are seldomly horizontally transferred. Through phylogenetic analysis of six complete prokaryotic genomes and the identification of 312 sets of orthologous genes present in all six genomes, we tested two theories describing the temporal flow of horizontal transfer. We show that operational genes have been horizontally transferred continuously since the divergence of the prokaryotes, rather than having been exchanged in one, or a few, massive events that occurred early in the evolution of prokaryotes. In agreement with earlier studies, we found that differences in rates of evolution between operational and informational genes are minimal, suggesting that factors other than rate of evolution are responsible for the observed differences in horizontal transfer. We propose that a major factor in the more frequent horizontal transfer of operational genes is that informational genes are typically members of large, complex systems, whereas operational genes are not, thereby making horizontal transfer of informational gene products less probable (the complexity hypothesis).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the hypodermis of a rhabditid nematode such as Caenorhabditis elegans is a single syncytium. The size of this syncytium (as measured by body size) has evolved repeatedly in the rhabditid nematodes. Two cellular mechanisms are important in the evolution of body size: changes in the numbers of cells that fuse with the syncytium, and the extent of its acellular growth. Thus nematodes differ from mammals and other invertebrates in which body size evolution is caused by changes in cell number alone. The evolution of acellular syncytial growth in nematodes is also associated with changes in the ploidy of hypodermal nuclei. These nuclei are polyploid as a consequence of iterative rounds of endoreduplication, and this endocycle has evolved repeatedly. The association between acellular growth and endoreduplication is also seen in C. elegans mutations that interrupt transforming growth factor-β signaling and that result in dwarfism and deficiencies in hypodermal ploidy. The transforming growth factor-β pathway is a candidate for being involved in nematode body size evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biologists should help to guide a process of cultural evolution in which society determines how much effort, if any, is ethically required to preserve options in biological evolution. Evolutionists, conservation biologists, and ecologists should be doing more research to determine actions that would best help to avoid foreclosing evolutionary options.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concerted evolution is often invoked to explain the diversity and evolution of the multigene families of major histocompatibility complex (MHC) genes and immunoglobulin (Ig) genes. However, this hypothesis has been controversial because the member genes of these families from the same species are not necessarily more closely related to one another than to the genes from different species. To resolve this controversy, we conducted phylogenetic analyses of several multigene families of the MHC and Ig systems. The results show that the evolutionary pattern of these families is quite different from that of concerted evolution but is in agreement with the birth-and-death model of evolution in which new genes are created by repeated gene duplication and some duplicate genes are maintained in the genome for a long time but others are deleted or become nonfunctional by deleterious mutations. We found little evidence that interlocus gene conversion plays an important role in the evolution of MHC and Ig multigene families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Competing hypotheses seek to explain the evolution of oxygenic and anoxygenic processes of photosynthesis. Since chlorophyll is less reduced and precedes bacteriochlorophyll on the modern biosynthetic pathway, it has been proposed that chlorophyll preceded bacteriochlorophyll in its evolution. However, recent analyses of nucleotide sequences that encode chlorophyll and bacteriochlorophyll biosynthetic enzymes appear to provide support for an alternative hypothesis. This is that the evolution of bacteriochlorophyll occurred earlier than the evolution of chlorophyll. Here we demonstrate that the presence of invariant sites in sequence datasets leads to inconsistency in tree building (including maximum-likelihood methods). Homologous sequences with different biological functions often share invariant sites at the same nucleotide positions. However, different constraints can also result in additional invariant sites unique to the genes, which have specific and different biological functions. Consequently, the distribution of these sites can be uneven between the different types of homologous genes. The presence of invariant sites, shared by related biosynthetic genes as well as those unique to only some of these genes, has misled the recent evolutionary analysis of oxygenic and anoxygenic photosynthetic pigments. We evaluate an alternative scheme for the evolution of chlorophyll and bacteriochlorophyll.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the evolutionary success of polyploidy in higher plants has been widely recognized, there is virtually no information on how polyploid genomes have evolved after their formation. In this report, we used synthetic polyploids of Brassica as a model system to study genome evolution in the early generations after polyploidization. The initial polyploids we developed were completely homozygous, and thus, no nuclear genome changes were expected in self-fertilized progenies. However, extensive genome change was detected by 89 nuclear DNA clones used as probes. Most genome changes involved loss and/or gain of parental restriction fragments and appearance of novel fragments. Genome changes occurred in each generation from F2 to F5, and the frequency of change was associated with divergence of the diploid parental genomes. Genetic divergence among the derivatives of synthetic polyploids was evident from variation in genome composition and phenotypes. Directional genome changes, possibly influenced by cytoplasmic-nuclear interactions, were observed in one pair of reciprocal synthetics. Our results demonstrate that polyploid species can generate extensive genetic diversity in a short period of time. The occurrence and impact of this process in the evolution of natural polyploids is unknown, but it may have contributed to the success and diversification of many polyploid lineages in both plants and animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Senescence, the decline in survivorship and fertility with increasing age, is a near-universal property of organisms. Senescence and limited lifespan are thought to arise because weak natural selection late in life allows the accumulation of mutations with deleterious late-age effects that are either neutral (the mutation accumulation hypothesis) or beneficial (the antagonistic pleiotropy hypothesis) early in life. Analyses of Drosophila spontaneous mutations, patterns of segregating variation and covariation, and lines selected for late-age fertility have implicated both classes of mutation in the evolution of aging, but neither their relative contributions nor the properties of individual loci that cause aging in nature are known. To begin to dissect the multiple genetic causes of quantitative variation in lifespan, we have conducted a genome-wide screen for quantitative trait loci (QTLs) affecting lifespan that segregate among a panel of recombinant inbred lines using a dense molecular marker map. Five autosomal QTLs were mapped by composite interval mapping and by sequential multiple marker analysis. The QTLs had large sex-specific effects on lifespan and age-specific effects on survivorship and mortality and mapped to the same regions as candidate genes with fertility, cellular aging, stress resistance and male-specific effects. Late age-of-onset QTL effects are consistent with the mutation accumulation hypothesis for the evolution of senescence, and sex-specific QTL effects suggest a novel mechanism for maintaining genetic variation for lifespan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used in vitro evolution to probe the relationship between stability and activity in a mesophilic esterase. Previous studies of these properties in homologous enzymes evolved for function at different temperatures have suggested that stability at high temperatures is incompatible with high catalytic activity at low temperatures through mutually exclusive demands on enzyme flexibility. Six generations of random mutagenesis, recombination, and screening stabilized Bacillus subtilis p-nitrobenzyl esterase significantly (>14°C increase in Tm) without compromising its catalytic activity at lower temperatures. Furthermore, analysis of the stabilities and activities of large numbers of random mutants indicates that these properties are not inversely correlated. Although enhanced thermostability does not necessarily come at the cost of activity, the process by which the molecule adapts is important. Mutations that increase thermostability while maintaining low-temperature activity are very rare. Unless both properties are constrained (by natural selection or screening) the evolution of one by the accumulation of single amino acid substitutions typically comes at the cost of the other, regardless of whether the two properties are inversely correlated or not correlated at all.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hox complex genes control spatial patterning mechanisms in the development of arthropod and vertebrate body plans. Hox genes are all expressed during embryogenesis in these groups, which are all directly developing organisms in that embryogenesis leads at once to formation of major elements of the respective adult body plans. In the maximally indirect development of a large variety of invertebrates, the process of embryogenesis leads only to a free-living, bilaterally organized feeding larva. Maximal indirect development is exemplified in sea urchins. The 5-fold radially symmetric adult body plan of the sea urchin is generated long after embryogenesis is complete, by a separate process occurring within imaginal tissues set aside in the larva. The single Hox gene complex of Strongylocentrotus purpuratus contains 10 genes, and expression of eight of these genes was measured by quantitative methods during both embryonic and larval developmental stages and also in adult tissues. Only two of these genes are used significantly during the entire process of embryogenesis per se, although all are copiously expressed during the stages when the adult body plan is forming in the imaginal rudiment. They are also all expressed in various combinations in adult tissues. Thus, development of a microscopic, free-living organism of bilaterian grade, the larva, does not appear to require expression of the Hox gene cluster as such, whereas development of the adult body plan does. These observations reflect on mechanisms by which bilaterian metazoans might have arisen in Precambrian evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ngrol genes (NgrolB, NgrolC, NgORF13, and NgORF14) that are similar in sequence to genes in the left transferred DNA (TL-DNA) of Agrobacterium rhizogenes have been found in the genome of untransformed plants of Nicotiana glauca. It has been suggested that a bacterial infection resulted in transformation of Ngrol genes early in the evolution of the genus Nicotiana. Although the corresponding four rol genes in TL-DNA provoked hairy-root syndrome in plants, present-day N. glauca and plants transformed with Ngrol genes did not exhibit this phenotype. Sequenced complementation analysis revealed that the NgrolB gene did not induce adventitious roots because it contained two point mutations. Single-base site-directed mutagenesis at these two positions restored the capacity for root induction to the NgrolB gene. When the NgrolB, with these two base substitutions, was positioned under the control of the cauliflower mosaic virus 35S promoter (P35S), transgenic tobacco plants exhibited morphological abnormalities that were not observed in P35s-RirolB plants. In contrast, the activity of the NgrolC gene may have been conserved after an ancient infection by bacteria. Discussed is the effect of the horizontal gene transfer of the Ngrol genes and mutations in the NgrolB gene on the phenotype of ancient plants during the evolution of N. glauca.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-dimensional structure of tRNA is organized into two domains—the acceptor-TΨC minihelix with the amino acid attachment site and a second, anticodon-containing, stem–loop domain. Aminoacyl-tRNA synthetases have a structural organization that roughly recapitulates the two-domain organization of tRNAs—an older primary domain that contains the catalytic center and interacts with the minihelix and a secondary, more recent, domain that makes contacts with the anticodon-containing arm. The latter contacts typically are essential for enhancement of the catalytic constant kcat through domain–domain communication. Methanococcus jannaschii tyrosyl-tRNA synthetase is a miniature synthetase with a tiny secondary domain suggestive of an early synthetase evolving from a one-domain to a two-domain structure. Here we demonstrate functional interactions with the anticodon-containing arm of tRNA that involve the miniaturized secondary domain. These interactions appear not to include direct contacts with the anticodon triplet but nonetheless lead to domain–domain communication. Thus, interdomain communication may have been established early in the evolution from one-domain to two-domain structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of the many processes that generate gene duplications, polyploidy is unique in that entire genomes are duplicated. This process has been important in the evolution of many eukaryotic groups, and it occurs with high frequency in plants. Recent evidence suggests that polyploidization may be accompanied by rapid genomic changes, but the evolutionary fate of discrete loci recently doubled by polyploidy (homoeologues) has not been studied. Here we use locus-specific isolation techniques with comparative mapping to characterize the evolution of homoeologous loci in allopolyploid cotton (Gossypium hirsutum) and in species representing its diploid progenitors. We isolated and sequenced 16 loci from both genomes of the allopolyploid, from both progenitor diploid genomes and appropriate outgroups. Phylogenetic analysis of the resulting 73.5 kb of sequence data demonstrated that for all 16 loci (14.7 kb/genome), the topology expected from organismal history was recovered. In contrast to observations involving repetitive DNAs in cotton, there was no evidence of interaction among duplicated genes in the allopolyploid. Polyploidy was not accompanied by an obvious increase in mutations indicative of pseudogene formation. Additionally, differences in rates of divergence among homoeologues in polyploids and orthologues in diploids were indistinguishable across loci, with significant rate deviation restricted to two putative pseudogenes. Our results indicate that most duplicated genes in allopolyploid cotton evolve independently of each other and at the same rate as those of their diploid progenitors. These indications of genic stasis accompanying polyploidization provide a sharp contrast to recent examples of rapid genomic evolution in allopolyploids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Like most proteins, complex RNA molecules often are modular objects made up of distinct structural and functional domains. The component domains of a protein can associate in alternative combinations to form molecules with different functions. These observations raise the possibility that complex RNAs also can be assembled from preexisting structural and functional domains. To test this hypothesis, an in vitro evolution procedure was used to isolate a previously undescribed class of complex ligase ribozymes, starting from a pool of 1016 different RNA molecules that contained a constant region derived from a large structural domain that occurs within self-splicing group I ribozymes. Attached to this constant region were three hypervariable regions, totaling 85 nucleotides, that gave rise to the catalytic motif within the evolved catalysts. The ligase ribozymes catalyze formation of a 3′,5′-phosphodiester linkage between adjacent template-bound oligonucleotides, one bearing a 3′ hydroxyl and the other a 5′ triphosphate. Ligation occurs in the context of a Watson–Crick duplex, with a catalytic rate of 0.26 min−1 under optimal conditions. The constant region is essential for catalytic activity and appears to retain the tertiary structure of the group I ribozyme. This work demonstrates that complex RNA molecules, like their protein counterparts, can share common structural domains while exhibiting distinct catalytic functions.