53 resultados para complex data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The docking and fusion of cargo-containing vesicles with target membranes of eukaryotic cells is mediated by the interaction of SNARE proteins present on both vesicle and target membranes. In many cases, the target membrane SNARE, or t-SNARE, exists as a complex of syntaxin with a member of the SNAP-25 family of palmitoylated proteins. We have identified a novel human kinase SNAK (SNARE kinase) that specifically phosphorylates the nonneuronal t-SNARE SNAP-23 in vivo. Interestingly, only SNAP-23 that is not assembled into t-SNARE complexes is phosphorylated by SNAK, and phosphorylated SNAP-23 resides exclusively in the cytosol. Coexpression with SNAK significantly enhances the stability of unassembled SNAP-23, and as a consequence, the assembly of newly synthesized SNAP-23 with syntaxin is augmented. These data demonstrate that phosphorylation of SNAP-23 by SNAK enhances the kinetics of t-SNARE assembly in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The products of the recF, recO, and recR genes are thought to interact and assist RecA in the utilization of single-stranded DNA precomplexed with single-stranded DNA binding protein (Ssb) during synapsis. Using immunoprecipitation, size-exclusion chromatography, and Ssb protein affinity chromatography in the absence of any nucleotide cofactors, we have obtained the following results: (i) RecF interacts with RecO, (ii) RecF interacts with RecR in the presence of RecO to form a complex consisting of RecF, RecO, and RecR (RecF–RecO–RecR); (iii) RecF interacts with Ssb protein in the presence of RecO. These data suggested that RecO mediates the interactions of RecF protein with RecR and with Ssb proteins. Incubation of RecF, RecO, RecR, and Ssb proteins resulted in the formation of RecF–RecO–Ssb complexes; i.e., RecR was excluded. Preincubation of RecF, RecO, and RecR proteins prior to addition of Ssb protein resulted in the formation of complexes consisting of RecF, RecO, RecR, and Ssb proteins. These data suggest that one role of RecF is to stabilize the interaction of RecR with RecO in the presence of Ssb protein. Finally, we found that interactions of RecF with RecO are lost in the presence of ATP. We discuss these results to explain how the RecF–RecO–RecR complex functions as an anti-Ssb factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is a long-standing proposal that localization of maternal factors in eggs can provide the basis for pattern formation in the early embryo. The localized information can be stored as RNA, one example being Vg1 RNA, which is localized exclusively to the vegetal hemisphere of Xenopus oocytes and eggs. Localization of Vg1 mRNA is directed by a 340-nt sequence element contained within its 3′ untranslated region. To understand the mechanism of localization, I have tested whether factors from the oocyte interact specifically with the RNA localization sequence. Results presented here show that a set of oocyte proteins form complexes with the localization element both in vitro and in vivo. These proteins are specifically enriched in the stages of oogenesis during which localization occurs and recognize sub-elements of the RNA localization element that are essential for localization in vivo. These data suggest that formation of a localization-specific RNA–protein complex may be the first step in directing Vg1 mRNA to its subcellular destination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Class I and class II molecules of the major histocompatibility complex present peptides to T cells. Class I molecules bind peptides that have been generated in the cytosol by proteasomes and delivered into the endoplasmic reticulum by the transporter associated with antigen presentation. In contrast, class II molecules are very efficient in the presentation of antigens that have been internalized and processed in endosomal/lysosomal compartments. In addition, class II molecules can present some cytosolic antigens by a TAP-independent pathway. To test whether this endogenous class II presentation pathway was linked to proteasome-mediated degradation of antigen in the cytosol, the N-end rule was utilized to produce two forms of the influenza virus matrix protein with different in vivo half-lives (10 min vs. 5 h) when expressed in human B cells. Whereas class I molecules presented both the short- and the long-lived matrix proteins, class II molecules presented exclusively the long-lived form of antigen. Thus, rapid degradation of matrix protein in the cytosol precluded its presentation by class II molecules. These data suggest that the turnover of long-lived cytosolic proteins, some of which is mediated by delivery into endosomal/lysosomal compartments, provides a mechanism for immune surveillance by CD4+ T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteins of the regulators of G protein signaling (RGS) family modulate the duration of intracellular signaling by stimulating the GTPase activity of G protein α subunits. It has been established that the ninth member of the RGS family (RGS9) participates in accelerating the GTPase activity of the photoreceptor-specific G protein, transducin. This process is essential for timely inactivation of the phototransduction cascade during the recovery from a photoresponse. Here we report that functionally active RGS9 from vertebrate photoreceptors exists as a tight complex with the long splice variant of the G protein β subunit (Gβ5L). RGS9 and Gβ5L also form a complex when coexpressed in cell culture. Our data are consistent with the recent observation that several RGS proteins, including RGS9, contain G protein γ-subunit like domain that can mediate their association with Gβ5 (Snow, B. E., Krumins, A. M., Brothers, G. M., Lee, S. F., Wall, M. A., Chung, S., Mangion, J., Arya, S., Gilman, A. G. & Siderovski, D. P. (1998) Proc. Natl. Acad. Sci. USA 95, 13307–13312). We report an example of such a complex whose cellular localization and function are clearly defined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The SWI/SNF family of chromatin-remodeling complexes facilitates gene expression by helping transcription factors gain access to their targets in chromatin. SWI/SNF and Rsc are distinctive members of this family from yeast. They have similar protein components and catalytic activities but differ in biological function. Rsc is required for cell cycle progression through mitosis, whereas SWI/SNF is not. Human complexes of this family have also been identified, which have often been considered related to yeast SWI/SNF. However, all human subunits identified to date are equally similar to components of both SWI/SNF and Rsc, leaving open the possibility that some or all of the human complexes are rather related to Rsc. Here, we present evidence that the previously identified human SWI/SNF-B complex is indeed of the Rsc type. It contains six components conserved in both Rsc and SWI/SNF. Importantly, it has a unique subunit, BAF180, that harbors a distinctive set of structural motifs characteristic of three components of Rsc. Of the two mammalian ATPases known to be related to those in the yeast complexes, human SWI/SNF-B contains only the homolog that functions like Rsc during cell growth. Immunofluorescence studies with a BAF180 antibody revealed that SWI/SNF-B localizes at the kinetochores of chromosomes during mitosis. Our data suggest that SWI/SNF-B and Rsc represent a novel subfamily of chromatin-remodeling complexes conserved from yeast to human, and could participate in cell division at kinetochores of mitotic chromosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural killer (NK) cells express C-type lectin-like receptors, encoded in the NK gene complex, that interact with major histocompatibility complex class I and either inhibit or activate functional activity. Human NK cells express heterodimers consisting of CD94 and NKG2 family molecules, whereas murine NK cells express homodimers belonging to the Ly-49 family. The corresponding orthologues for other species, however, have not been described. In this report, we used probes derived from the expressed sequence tag database to clone C57BL/6-derived cDNAs homologous to human NKG2-D and CD94. Among normal tissues, murine NKG2-D and CD94 transcripts are highly expressed only in activated NK cells, including both Ly-49A+ and Ly-49A− subpopulations. Additionally, mNKG2-D is expressed in murine NK cell clones KY-1 and KY-2, whereas mCD94 expression is observed only in KY-1 cells but not KY-2. Last, we have finely mapped the physical location of the Cd94 (centromeric) and Nkg2d (telomeric) genes between Cd69 and the Ly49 cluster in the NK complex. Thus, these data indicate the expanding complexity of the NK complex and the corresponding repertoire of C-type lectin-like receptors on murine NK cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Plasmodium falciparum Genome Database (http://PlasmoDB.org) integrates sequence information, automated analyses and annotation data emerging from the P.falciparum genome sequencing consortium. To date, raw sequence coverage is available for >90% of the genome, and two chromosomes have been finished and annotated. Data in PlasmoDB are organized by chromosome (1–14), and can be accessed using a variety of tools for graphical and text-based browsing or downloaded in various file formats. The GUS (Genomics Unified Schema) implementation of PlasmoDB provides a multi-species genomic relational database, incorporating data from human and mouse, as well as P.falciparum. The relational schema uses a highly structured format to accommodate diverse data sets related to genomic sequence and gene expression. Tools have been designed to facilitate complex biological queries, including many that are specific to Plasmodium parasites and malaria as a disease. Additional projects seek to integrate genomic information with the rich data sets now becoming available for RNA transcription, protein expression, metabolic pathways, genetic and physical mapping, antigenic and population diversity, and phylogenetic relationships with other apicomplexan parasites. The overall goal of PlasmoDB is to facilitate Internet- and CD-ROM-based access to both finished and unfinished sequence information by the global malaria research community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we show that presenilin-1 (PS1), a protein involved in Alzheimer's disease, binds directly to epithelial cadherin (E-cadherin). This binding is mediated by the large cytoplasmic loop of PS1 and requires the membrane-proximal cytoplasmic sequence 604–615 of mature E-cadherin. This sequence is also required for E-cadherin binding of protein p120, a known regulator of cadherin-mediated cell adhesion. Using wild-type and PS1 knockout cells, we found that increasing PS1 levels suppresses p120/E-cadherin binding, and increasing p120 levels suppresses PS1/E-cadherin binding. Thus PS1 and p120 bind to and mutually compete for cellular E-cadherin. Furthermore, PS1 stimulates E-cadherin binding to β- and γ-catenin, promotes cytoskeletal association of the cadherin/catenin complexes, and increases Ca2+-dependent cell–cell aggregation. Remarkably, PS1 familial Alzheimer disease mutant ΔE9 increased neither the levels of cadherin/catenin complexes nor cell aggregation, suggesting that this familial Alzheimer disease mutation interferes with cadherin-based cell–cell adhesion. These data identify PS1 as an E-cadherin-binding protein and a regulator of E-cadherin function in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yeast phosphatidylinositol-transfer protein (Sec14p) is essential for Golgi secretory function and cell viability. This requirement of Sec14p is relieved by genetic inactivation of the cytidine diphosphate-choline pathway for phosphatidycholine (PtdCho) biosynthesis. Standard phenotypic analyses indicate that inactivation of the phosphatidylethanolamine (PtdEtn) pathway for PtdCho biosynthesis, however, does not rescue the growth and secretory defects associated with Sec14p deficiency. We now report inhibition of choline uptake from the media reveals an efficient “bypass Sec14p” phenotype associated with PtdEtn-methylation pathway defects. We further show that the bypass Sec14p phenotype associated with PtdEtn-methylation pathway defects resembles other bypass Sec14p mutations in its dependence on phospholipase D activity. Finally, we find that increased dosage of enzymes that catalyze phospholipase D-independent turnover of PtdCho, via mechanisms that do not result in a direct production of phosphatidic acid or diacylglycerol, effect a partial rescue of sec14-1ts-associated growth defects. Taken together, these data support the idea that PtdCho is intrinsically toxic to yeast Golgi secretory function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously conducted sequence analysis of Arabidopsis thaliana (ecotype Columbia-0) reported an insertion of 270-kb mtDNA into the pericentric region on the short arm of chromosome 2. DNA fiber-based fluorescence in situ hybridization analyses reveal that the mtDNA insert is 618 ± 42 kb, ≈2.3 times greater than that determined by contig assembly and sequencing analysis. Portions of the mitochondrial genome previously believed to be absent were identified within the insert. Sections of the mtDNA are repeated throughout the insert. The cytological data illustrate that DNA contig assembly by using bacterial artificial chromosomes tends to produce a minimal clone path by skipping over duplicated regions, thereby resulting in sequencing errors. We demonstrate that fiber-fluorescence in situ hybridization is a powerful technique to analyze large repetitive regions in the higher eukaryotic genomes and is a valuable complement to ongoing large genome sequencing projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Drosophila trithorax group gene brahma (brm) encodes the ATPase subunit of a SWI/SNF-like chromatin-remodeling complex. A key question about chromatin-remodeling complexes is how they interact with DNA, particularly in the large genomes of higher eukaryotes. Here, we report the characterization of BAP111, a BRM-associated protein that contains a high mobility group (HMG) domain predicted to bind distorted or bent DNA. The presence of an HMG domain in BAP111 suggests that it may modulate interactions between the BRM complex and chromatin. BAP111 is an abundant nuclear protein that is present in all cells throughout development. By using gel filtration chromatography and immunoprecipitation assays, we found that the majority of BAP111 protein in embryos is associated with the BRM complex. Furthermore, heterozygosity for BAP111 enhanced the phenotypes resulting from a partial loss of brm function. These data demonstrate that the BAP111 subunit is important for BRM complex function in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ensatina eschscholtzii complex of plethodontid salamanders, a well-known “ring species,” is thought to illustrate stages in the speciation process. Early research, based on morphology and coloration, has been extended by the incorporation of studies of protein variation and mitochondrial DNA sequences. The new data show that the complex includes a number of geographically and genetically distinct components that are at or near the species level. The complex is old and apparently has undergone instances of range contraction, isolation, differentiation, and then expansion and secondary contact. While the hypothesis that speciation is retarded by gene flow around the ring is not supported by molecular data, the general biogeographical hypothesis is supported. There is evidence of a north to south range expansion along two axes, with secondary contact and completion of the ring in southern California. Current research targets regions once thought to show primary intergradation, but which molecular markers reveal to be zones of secondary contact. Here emphasis is on the subspecies E. e. xanthoptica, which is involved in four distinct secondary contacts in central California. There is evidence of renewed genetic interactions upon recontact, with greater genetic differentiation within xanthoptica than between it and some of the interacting populations. The complex presents a full array of intermediate conditions between well-marked species and geographically variable populations. Geographically differentiated segments represent a diversity of depths of time of isolation and admixture, reflecting the complicated geomorphological history of California. Ensatina illustrates the continuing difficulty in making taxonomic assignments in complexes studied during species formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupling of cerebral blood flow (CBF) and cerebral metabolic rate for oxygen (CMRO2) in physiologically activated brain states remains the subject of debates. Recently it was suggested that CBF is tightly coupled to oxidative metabolism in a nonlinear fashion. As part of this hypothesis, mathematical models of oxygen delivery to the brain have been described in which disproportionately large increases in CBF are necessary to sustain even small increases in CMRO2 during activation. We have explored the coupling of CBF and oxygen delivery by using two complementary methods. First, a more complex mathematical model was tested that differs from those recently described in that no assumptions were made regarding tissue oxygen level. Second, [15O] water CBF positron emission tomography (PET) studies in nine healthy subjects were conducted during states of visual activation and hypoxia to examine the relationship of CBF and oxygen delivery. In contrast to previous reports, our model showed adequate tissue levels of oxygen could be maintained without the need for increased CBF or oxygen delivery. Similarly, the PET studies demonstrated that the regional increase in CBF during visual activation was not affected by hypoxia. These findings strongly indicate that the increase in CBF associated with physiological activation is regulated by factors other than local requirements in oxygen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sphingomyelin- and cholesterol-enriched microdomains can be isolated as detergent-resistant membranes from total cell extracts (total-DRM). It is generally believed that this total-DRM represents microdomains of the plasma membrane. Here we describe the purification and detailed characterization of microdomains from Golgi membranes. These Golgi-derived detergent-insoluble complexes (GICs) have a low buoyant density and are highly enriched in lipids, containing 25% of total Golgi phospholipids including 67% of Golgi-derived sphingomyelin, and 43% of Golgi-derived cholesterol. In contrast to total-DRM, GICs contain only 10 major proteins, present in nearly stoichiometric amounts, including the α- and β-subunits of heterotrimeric G proteins, flotillin-1, caveolin, and subunits of the vacuolar ATPase. Morphological data show a brefeldin A-sensitive and temperature-sensitive localization to the Golgi complex. Strikingly, the stability of GICs does not depend on its membrane environment, because, after addition of brefeldin A to cells, GICs can be isolated from a fused Golgi-endoplasmic reticulum organelle. This indicates that GIC microdomains are not in a dynamic equilibrium with neighboring membrane proteins and lipids. After disruption of the microdomains by cholesterol extraction with cyclodextrin, a subcomplex of several GIC proteins including the B-subunit of the vacuolar ATPase, flotillin-1, caveolin, and p17 could still be isolated by immunoprecipitation. This indicates that several of the identified GIC proteins localize to the same microdomains and that the microdomain scaffold is not required for protein interactions between these GIC proteins but instead might modulate their affinity.