27 resultados para circular dichroism spectroscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The SH3 domain is a well characterized small protein module with a simple fold found in many proteins. At acid pH, the SH3 domain (PI3-SH3) of the p85α subunit of bovine phosphatidylinositol 3-kinase slowly forms a gel that consists of typical amyloid fibrils as assessed by electron microscopy, a Congo red binding assay, and x-ray fiber diffraction. The soluble form of PI3-SH3 at acid pH (the A state by a variety of techniques) from which fibrils are generated has been characterized. Circular dichroism in the far- and near-UV regions and 1H NMR indicate that the A state is substantially unfolded relative to the native protein at neutral pH. NMR diffusion measurements indicate, however, that the effective hydrodynamic radius of the A state is only 23% higher than that of the native protein and is 20% lower than that of the protein denatured in 3.5 M guanidinium chloride. In addition, the A state binds the hydrophobic dye 1-anilinonaphthalene-8-sulfonic acid, which suggests that SH3 in this state has a partially formed hydrophobic core. These results indicate that the A state is partially folded and support the hypothesis that partially folded states formed in solution are precursors of amyloid deposition. Moreover, that this domain aggregates into amyloid fibrils suggests that the potential for amyloid deposition may be a common property of proteins, and not only of a few proteins associated with disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural and DNA binding behavior is described for an analog of the vnd/NK-2 homeodomain, which contains a single amino acid residue alanine to threonine replacement in position 35 of the homeodomain. Multidimensional nuclear magnetic resonance, circular dichroism, and electrophoretic gel retardation assays were carried out on recombinant 80-aa residue proteins that encompass the wild-type and mutant homeodomains. The mutant A35T vnd/NK-2 homeodomain is unable to adopt a folded conformation free in solution at temperatures down to −5°C in contrast to the behavior of the corresponding wild-type vnd/NK-2 homeodomain, which is folded into a functional three-dimensional structure below 25°C. The A35T vnd/NK-2 binds specifically to the vnd/NK-2 target DNA sequence, but with an affinity that is 50-fold lower than that of the wild-type homeodomain. Although the three-dimensional structure of the mutant A35T vnd/NK-2 in the DNA bound state shows characteristic helix–turn–helix behavior similar to that of the wild-type homeodomain, a notable structural deviation in the mutant A35T analog is observed for the amide proton of leucine-40. The wild-type homeodomain forms an unusual i,i-5 hydrogen bond with the backbone amide oxygen of residue 35. In the A35T mutant this amide proton resonance is shifted upfield by 1.27 ppm relative to the resonance frequency for the wild-type analog, thereby indicating a significant alteration of this i,i-5 hydrogen bond.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To test the significance of ultrafast protein folding signals (≪1 msec), we studied cytochrome c (Cyt c) and two Cyt c fragments with major C-terminal segments deleted. The fragments remain unfolded under all conditions and so could be used to define the unfolded baselines for protein fluorescence and circular dichroism (CD) as a function of denaturant concentration. When diluted from high to low denaturant in kinetic folding experiments, the fragments readjust to their new baseline values in a “burst phase” within the mixing dead time. The fragment burst phase reflects a contraction of the polypeptide from a more extended unfolded condition at high denaturant to a more contracted unfolded condition in the poorer, low denaturant solvent. Holo Cyt c exhibits fluorescence and CD burst phase signals that are essentially identical to the fragment signals over the whole range of final denaturant concentrations, evidently reflecting the same solvent-dependent, relatively nonspecific contraction and not the formation of a specific folding intermediate. The significance of fast folding signals in Cyt c and other proteins is discussed in relation to the hypothesis of an initial rate-limiting search-nucleation-collapse step in protein folding [Sosnick, T. R., Mayne, L. & Englander, S. W. (1996) Proteins Struct. Funct. Genet. 24, 413–426].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ectodomain of the Ebola virus Gp2 glycoprotein was solubilized with a trimeric, isoleucine zipper derived from GCN4 (pIIGCN4) in place of the hydrophobic fusion peptide at the N terminus. This chimeric molecule forms a trimeric, highly α-helical, and very thermostable molecule, as determined by chemical crosslinking and circular dichroism. Electron microscopy indicates that Gp2 folds into a rod-like structure like influenza HA2 and HIV-1 gp41, providing further evidence that viral fusion proteins from diverse families such as Orthomyxoviridae (Influenza), Retroviridae (HIV-1), and Filoviridae (Ebola) share common structural features, and suggesting a common membrane fusion mechanism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[PSI+] is a genetic element in yeast for which a heritable change in phenotype appears to be caused by a heritable change in the conformational state of the Sup35 protein. The inheritance of [PSI+] and the physical state of Sup35 in vivo depend on the protein chaperone Hsp104 (heat shock protein 104). Although these observations provide a strong genetic argument in support of the “protein-only” or “prion” hypothesis for [PSI+], there is, as yet, no direct evidence of an interaction between the two proteins. We report that when purified Sup35 and Hsp104 are mixed, the circular dichroism (CD) spectrum differs from that predicted by the addition of the proteins’ individual spectra, and the ATPase activity of Hsp104 is inhibited. Similar results are obtained with two other amyloidogenic substrates, mammalian PrP and β-amyloid 1-42 peptide, but not with several control proteins. With a group of peptides that span the PrP protein sequence, those that produced the largest changes in CD spectra also caused the strongest inhibition of ATPase activity in Hsp104. Our observations suggest that (i) previously described genetic interactions between Hsp104 and [PSI+] are caused by direct interaction between Hsp104 and Sup35; (ii) Sup35 and PrP, the determinants of the yeast and mammalian prions, respectively, share structural features that lead to a specific interaction with Hsp104; and (iii) these interactions couple a change in structure to the ATPase activity of Hsp104.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bas1p, a divergent yeast member of the Myb family of transcription factors, shares with the proteins of this family a highly conserved cysteine residue proposed to play a role in redox regulation. Substitutions of this residue in Bas1p (C153) allowed us to establish that, despite its very high conservation, it is not strictly required for Bas1p function: its substitution with a small hydrophobic residue led to a fully functional protein in vitro and in vivo. C153 was accessible to an alkylating agent in the free protein but was protected by prior exposure to DNA. The reactivity of cysteines in the first and third repeats was much lower than in the second repeat, suggesting a more accessible conformation of repeat 2. Proteolysis protection, fluorescence quenching and circular dichroism experiments further indicated that DNA binding induces structural changes making Bas1p less accessible to modifying agents. Altogether, our results strongly suggest that the second repeat of the DNA-binding domain of Bas1p behaves similarly to its Myb counterpart, i.e. a DNA-induced conformational change in the second repeat leads to formation of a full helix–turn–helix-related motif with the cysteine packed in the hydrophobic core of the repeat.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A variety of naturally occurring biomaterials owe their unusual structural and mechanical properties to layers of β-sheet proteins laminated between layers of inorganic mineral. To explore the possibility of fabricating novel two-dimensional protein layers, we studied the self-assembly properties of de novo proteins from a designed combinatorial library. Each protein in the library has a distinct 63 amino acid sequence, yet they all share an identical binary pattern of polar and nonpolar residues, which was designed to favor the formation of six-stranded amphiphilic β-sheets. Characterization of proteins isolated from the library demonstrates that (i) they self assemble into monolayers at an air/water interface; (ii) the monolayers are dominated by β-sheet secondary structure, as shown by both circular dichroism and infrared spectroscopies; and (iii) the measured areas (500- 600 Å2) of individual protein molecules in the monolayers match those expected for proteins folded into amphiphilic β-sheets. The finding that similar structures are formed by distinctly different protein sequences suggests that assembly into β-sheet monolayers can be encoded by binary patterning of polar and nonpolar amino acids. Moreover, because the designed binary pattern is compatible with a wide variety of different sequences, it may be possible to fabricate β-sheet monolayers by using combinations of side chains that are explicitly designed to favor particular applications of novel biomaterials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2-Nitropropane (2-NP), an important industrial solvent and a component of cigarette smoke, is mutagenic in bacteria and carcinogenic in rats. 8-Amino-2′-deoxyguanosine (8-amino-dG) is one of the types of DNA damage found in liver, the target organ in 2-NP-treated rats. To investigate the thermodynamic properties of 8-amino-dG opposite each of the four DNA bases, we have synthesized an 11mer, d(CCATCG*CTACC), in which G* represents the modified base. By annealing a complementary DNA strand to this modified 11mer, four sets of duplexes were generated each containing one of the four DNA bases opposite the lesion. Circular dichroism studies indicated that 8-amino-dG did not alter the global helical properties of natural right-handed B-DNA. The thermal stability of each duplex was examined by UV melting measurements and compared with its unmodified counterpart. For the unmodified 11mer, the relative stability of the complementary DNA bases opposite G was in the order C > T > G > A, as determined from their –ΔG° values. The free energy change of each modified duplex was lower than its unmodified counterpart, except for the G*:G pair that exhibited a higher melting transition and a larger –ΔG° than the G:G duplex. Nevertheless, the stability of the modified 11mer duplex also followed the order C > T > G > A when placed opposite 8-amino-dG. To explore if 8-amino-dG opposite another 8-amino-dG has any advantage in base pairing, a G*:G* duplex was evaluated, which showed that the stability of this duplex was similar to the G*:G duplex. Mutagenesis of 8-amino-dG in this sequence context was studied in Escherichia coli, which showed that the lesion is weakly mutagenic (mutation frequency ∼10–3) but still can induce a variety of targeted and semi-targeted mutations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the mechanism of thermodynamic stability of an RNA structure has significant implications for the function and design of RNA. We investigated the equilibrium folding of a thermophilic ribozyme and its mesophilic homologue by using hydroxyl radical protection, small-angle x-ray scattering, and circular dichroism. Both RNAs require Mg2+ to fold to their native structures that are very similar. The stability is measured as a function of Mg2+ and urea concentrations at different temperatures. The enhanced stability of the thermophilic ribozyme primarily is derived from a tremendous increase in the amount of structure formed in the ultimate folding transition. This increase in structure formation and cooperativity arises because the penultimate and the ultimate folding transitions in the mesophilic ribozyme become linked into a single transition in the folding of the thermophilic ribozyme. Therefore, the starting point, or reference state, for the transition to the native, functional thermophilic ribozyme is significantly less structured. The shift in the reference state, and the resulting increase in folding cooperativity, is likely due to the stabilization of selected native interactions that only form in the ultimate transition. This mechanism of using a less structured intermediate and increased cooperativity to achieve higher functional stability for tertiary RNAs is fundamentally different from that commonly proposed to explain the increased stability of thermophilic proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Isolated guanine quadruplex structures have been described at high resolution both in solution and in the solid state. The existence of this unusual DNA structure in vivo and its biological significance remain to be determined. We describe the binding of 3,3'-diethyloxadicarbocyanine to dimeric hairpin guanine quadruplexes. This interaction results in a set of unique spectrophotometric signatures, none of which arises from binding to single strands or Watson-Crick duplexes. These unique signatures include a new absorbance peak (lambda max = 534 nm), an induced circular dichroism (lambda = 534-626 nm), a quenching of the dye fluorescence upon excitation with visible light, and strong energy transfer from DNA. This last effect provides the basis for detecting hairpin quadruplex structures in the presence of excess amounts of nonquadruplex DNA structures, such as single strands and Watson-Crick duplexes. The mechanism of quadruplex recognition by this dye is discussed, along with the possibility of using this dye as a probe for hairpin quadruplex structures in vitro and in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Apolipoprotein A-1 (apoA-1) in complex with high-density lipoprotein is critically involved in the transport and metabolism of cholesterol and in the pathogenesis of atherosclerosis. We reexamined the thermal unfolding of lipid-free apoA-1 in low-salt solution at pH approximately 7, by using differential scanning calorimetry and circular dichroism. At protein concentrations <5 mg/ml, thermal unfolding of apoA-1 is resolved as an extended peak (25 degrees C-90 degrees C) that can be largely accounted for by a single reversible non-two-state transition with midpoint Tm 57 +/- 1 degree C, calorimetric enthalpy deltaH(Tm)= 200 +/- 20 kcal/mol (1 kcal = 4.18 kJ), van't Hoff enthalpy deltaHv(Tm) approximately 32.5 kcal/mol, and cooperativity deltaHv(Tm)/deltaH(Tm) approximately 0.16. The enthalpy deltaH(Tm) can be accounted for by melting of the alpha-helical structure that is inferred by CD to constitute approximately 60% of apoA-1 amino acids. Farand near-UV CD spectra reveal noncoincident melting of the secondary and tertiary structural elements and indicate a well-defined secondary structure but a largely melted tertiary structure for apoA-1 at approximately 37 degrees C and pH 7. This suggests a molten globular-like state for lipid-free apoA-1 under near-physiological conditions. Our results suggest that in vivo lipid binding by apoA-1 may be mediated via the molten globular apolipoprotein state in plasma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Apomyoglobin folding proceeds through a molten globule intermediate (low-salt form; I1) that has been characterized by equilibrium (pH 4) and kinetic (pH 6) folding experiments. Of the eight alpha-helices in myoglobin, three (A, G, and H) are structured in I1, while the rest appear to be unfolded. Here we report on the structure and stability of a second intermediate, the trichloroacetate form of the molten globule intermediate (I2), which is induced either from the acid-unfolded protein or from I1 by > or = 5 mM sodium trichloroacetate. Circular dichroism measurements monitoring urea- and acid-induced unfolding indicate that I2 is more highly structured and more stable than I1. Although I2 exhibits properties closer to those of the native protein, one-dimensional NMR spectra show that it maintains the lack of fixed side-chain structure that is the hallmark of a molten globule. Amide proton exchange and 1H-15N two-dimensional NMR experiments are used to identify the source of the extra helicity observed in I2. The results reveal that the existing A, G, and H helices present in I1 have become more stable in I2 and that a fourth helix--the B helix--has been incorporated into the molten globule. Available evidence is consistent with I2 being an on-pathway intermediate. The data support the view that apomyoglobin folds in a sequential fashion through a single pathway populated by intermediates of increasing structure and stability.