55 resultados para chronic myeloid leukemia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with the M4Eo subtype of acute myeloid leukemia almost invariably are found to have an inversion of chromosome 16 in their leukemic cells, which results in a gene fusion between the transcription factor called core binding factor beta (CBFbeta) on 16q and a smooth muscle myosin heavy chain (SMMHC) gene on 16p. Subcellular localizations of the wild-type CBFbeta and the CBFbeta-SMMHC fusion protein were determined by immunofluorescence of NIH 3T3 cells that overexpress wild-type or fusion protein. Normal CBFbeta showed an unexpected perinuclear pattern consistent with primary localization in the Golgi complex. The CBFbeta-SMMHC fusion protein had a very different pattern. Nuclear staining included rod-like crystalline structures as long as 11 microm. The heterodimeric partner of CBFbeta, CBFalpha, formed part of this complex. Cytoplasmic staining included stress fibers that colocalized with actin, probably as a consequence of the myosin heavy chain component of the fusion protein. Deletion of different regions of the CBFbeta portion of the fusion protein showed that binding to CBFalpha was not required for nuclear translocation. However, deletion of parts of the SMMHC domain of the fusion protein involved in myosin-mediated filament formation resulted in proteins that did not form rod-like structures. These observations confirm previous indirect evidence that the CBFbeta-SMMHC fusion protein is capable of forming macromolecular nuclear aggregates and suggests possible models for the mechanism of leukemic transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The EVI1 gene, located at chromosome band 3q26, is overexpressed in some myeloid leukemia patients with breakpoints either 5' of the gene in the t(3;3)(q21;q26) or 3' of the gene in the inv(3)(q21q26). EVI1 is also expressed as part of a fusion transcript with the transcription factor AML1 in the t(3;21)(q26;q22), associated with myeloid leukemia. In cells with t(3;21), additional fusion transcripts are AML1-MDS1 and AML1-MDS1-EVI1. MDS1 is located at 3q26 170-400 kb upstream (telomeric) of EVI1 in the chromosomal region in which some of the breakpoints 5' of EVI1 have been mapped. MDS1 has been identified as a single gene as well as a previously unreported exon(s) of EVI1 We have analyzed the relationship between MDS1 and EVI1 to determine whether they are two separate genes. In this report, we present evidence indicating that MDS1 exists in normal tissues both as a unique transcript and as a normal fusion transcript with EVI1, with an additional 188 codons at the 5' end of the previously reported EVI1 open reading frame. This additional region has about 40% homology at the amino acid level with the PR domain of the retinoblastoma-interacting zinc-finger protein RIZ. These results are important in view of the fact that EVI1 and MDS1 are involved in leukemia associated with chromosomal translocation breakpoints in the region between these genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erythropoietin (Epo)-independent differentiation of erythroid progenitors is a major characteristic of myeloproliferative disorders, including chronic myeloid leukemia. Epo receptor (EpoR) signaling is crucial for normal erythroid development, as evidenced by the properties of Epo−/− and EpoR−/− mice, which contain a normal number of fetal liver erythroid progenitors but die in utero from a severe anemia attributable to the absence of red cell maturation. Here we show that two constitutively active cytoplasmic protein tyrosine kinases, P210BCR-ABL and v-SRC, can functionally replace the EpoR and support full proliferation, differentiation, and maturation of fetal liver erythroid progenitors from EpoR−/− mice. These protein tyrosine kinases can also partially complement the myeloid growth factors IL-3, IL-6, and Steel factor, which are normally required in addition to Epo for erythroid development. Additionally, BCR-ABL mutants that lack residues necessary for transformation of fibroblasts or bone marrow cells can fully support normal erythroid development. These results demonstrate that activated tyrosine kinase oncoproteins implicated in tumorigenesis and human leukemia can functionally complement for cytokine receptor signaling pathways to support normal erythropoiesis in EpoR-deficient cells. Moreover, terminal differentiation of erythroid cells requires generic signals provided by activated protein tyrosine kinases and does not require a specific signal unique to a cytokine receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The (3;21)(q26;q22) translocation associated with treatment-related myelodysplastic syndrome, treatment-related acute myeloid leukemia, and blast crisis of chronic myeloid leukemia results in the expression of the chimeric genes AML1/EAP, AML1/MDS1, and AML1/EVI1. AML1 (CBFA2), which codes for the alpha subunit of the heterodimeric transcription factor CBF, is also involved in the t(8;21), and the gene coding for the beta subunit (CBFB) is involved in the inv(16). These are two of the most common recurring chromosomal rearrangements in acute myeloid leukemia. CBF corresponds to the murine Pebp2 factor, and CBF binding sites are found in a number of eukaryotic and viral enhancers and promoters. We studied the effects of AML1/EAP and AML1/MDS1 at the AML1 binding site of the CSF1R (macrophage-colony-stimulating factor receptor gene) promoter by using reporter gene assays, and we analyzed the consequences of the expression of both chimeric proteins in an embryonic rat fibroblast cell line (Rat1A) in culture and after injection into athymic nude mice. Unlike AML1, which is an activator of the CSF1R promoter, the chimeric proteins did not transactivate the CSF1R promoter site but acted as inhibitors of AML1 (CBFA2). AML1/EAP and AML1/MDS1 expressed in adherent Rat1A cells decreased contact inhibition of growth, and expression of AML1/MDS1 was associated with acquisition of the ability to grow in suspension culture. Expression of AML1/MDS1 increased the tumorigenicity of Rat1A cells injected into athymic nude mice, whereas AML1/EAP expression prevented tumor growth. These results suggest that expression of AML1/EAP and AML1/MDS1 can interfere with normal AML1 function, and that AML1/MDS1 has tumor-promoting properties in an embryonic rat fibroblast cell line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P210 Bcr-Abl is an activated tyrosine kinase oncogene encoded by the Philadelphia chromosome associated with human chronic myelogenous leukemia (CML). The disease represents a clonal disorder arising in the pluripotent hematopoietic stem cell. During the chronic phase, patients present with a dramatic expansion of myeloid cells and a mild anemia. Retroviral gene transfer and transgenic expression in rodents have demonstrated the ability of Bcr-Abl to induce various types of leukemia. However, study of human CML or rodent models has not determined the direct and immediate effects of Bcr-Abl on hematopoietic cells from those requiring secondary genetic or epigenetic changes selected during the pathogenic process. We utilized tetracycline-regulated expression of Bcr-Abl from a promoter engineered for robust expression in primitive stem cells through multilineage blood cell development in combination with the in vitro differentiation of embryonal stem cells into hematopoietic elements. Our results demonstrate that Bcr-Abl expression alone is sufficient to increase the number of multipotent and myeloid lineage committed progenitors in a dose-dependent manner while suppressing the development of committed erythroid progenitors. These effects are reversible upon extinguishing Bcr-Abl expression. These findings are consistent with Bcr-Abl being the sole genetic change needed for the establishment of the chronic phase of CML and provide a powerful system for the analysis of any genetic change that alters cell growth and lineage choices of the hematopoietic stem cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human t(3;21)(q26;q22) translocation is found as a secondary mutation in some cases of chronic myelogenous leukemia during the blast phase and in therapy-related myelodysplasia and acute myelogenous leukemia. One result of this translocation is a fusion between the AML1, MDS1, and EVI1 genes, which encodes a transcription factor of approximately 200 kDa. The role of the AML1/MDS1/EVI1 (AME) fusion gene in leukemogenesis is largely unknown. In this study, we analyzed the effect of the AME fusion gene in vivo by expressing it in mouse bone marrow cells via retroviral transduction. We found that mice transplanted with AME-transduced bone marrow cells suffered from an acute myelogenous leukemia (AML) 5–13 mo after transplantation. The disease could be readily transferred into secondary recipients with a much shorter latency. Morphological analysis of peripheral blood and bone marrow smears demonstrated the presence of myeloid blast cells and differentiated but immature cells of both myelocytic and monocytic lineages. Cytochemical and flow cytometric analysis confirmed that these mice had a disease similar to the human acute myelomonocytic leukemia. This murine model for AME-induced AML will help dissect the molecular mechanism of AML and the molecular biology of the AML1, MDS1, and EVI1 genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic myelogenous leukemia evolves in two clinically distinct stages: a chronic and a blast crisis phase. The molecular changes associated with chronic phase to blast crisis transition are largely unknown. We have identified a cDNA clone, DR-nm23, differentially expressed in a blast-crisis cDNA library, which has approximately 70% sequence similarity to the putative metastatic suppressor genes, nm23-H1 and nm23-H2. The deduced amino acid sequence similarity to the proteins encoded by these two latter genes is approximately 65% and includes domains and amino acid residues (the leucine zipper-like and the RGD domain, a serine and a histidine residue in the NH2- and in the COOH-terminal portion of the protein, respectively) postulated to be important for nm23 function. DR-nm23 mRNA is preferentially expressed at early stages of myeloid differentiation of highly purified CD34+ cells. Its constitutive expression in the myeloid precursor 32Dc13 cell line, which is growth-factor dependent for both proliferation and differentiation, results in inhibition of granulocytic differentiation induced by granulocyte colony-stimulating factor and causes apoptotic cell death. These results are consistent with a role for DR-nm23 in normal hematopoiesis and raise the possibility that its overexpression contributes to differentiation arrest, a feature of blastic transformation in chronic myelogenous leukemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromosomal rearrangements involving band 12p13 are found in a wide variety of human leukemias but are particularly common in childhood acute lymphoblastic leukemia. The genes involved in these rearrangements, however, have not been identified. We now report the cloning of a t(12;21) translocation breakpoint involving 12p13 and 21q22 in two cases of childhood pre-B acute lymphoblastic leukemia, in which t(12;21) rearrangements were not initially apparent. The consequence of the translocation is fusion of the helix-loop-helix domain of TEL, an ETS-like putative transcription factor, to the DNA-binding and transactivation domains of the transcription factor AML1. These data show that TEL, previously shown to be fused to the platelet-derived growth factor receptor beta in chronic myelomonocytic leukemia, can be implicated in the pathogenesis of leukemia through its fusion to either a receptor tyrosine kinase or a transcription factor. The TEL-AML1 fusion also indicates that translocations affecting the AML1 gene can be associated with lymphoid, as well as myeloid, malignancy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reduction of 5,10-methylenetetrahydrofolate (methyleneTHF), a donor for methylating dUMP to dTMP in DNA synthesis, to 5-methyltetrahydrofolate (methylTHF), the primary methyl donor for methionine synthesis, is catalyzed by 5,10-methylenetetrahydrofolate reductase (MTHFR). A common 677 C → T polymorphism in the MTHFR gene results in thermolability and reduced MTHFR activity that decreases the pool of methylTHF and increases the pool of methyleneTHF. Recently, another polymorphism in MTHFR (1298 A → C) has been identified that also results in diminished enzyme activity. We tested whether carriers of these variant alleles are protected from adult acute leukemia. We analyzed DNA from a case–control study in the United Kingdom of 308 adult acute leukemia patients and 491 age- and sex-matched controls. MTHFR variant alleles were determined by a PCR-restriction fragment length polymorphism assay. The MTHFR 677TT genotype was lower among 71 acute lymphocytic leukemia (ALL) cases compared with 114 controls, conferring a 4.3-fold decrease in risk of ALL [odds ratio (OR = 0.23; 95% CI = 0.06–0.81]. We observed a 3-fold reduction in risk of ALL in individuals with the MTHFR 1298AC polymorphism (OR = 0.33; 95% CI = 0.15–0.73) and a 14-fold decreased risk of ALL in those with the MTHFR 1298CC variant allele (OR = 0.07; 95% CI = 0.00–1.77). In acute myeloid leukemia, no significant difference in MTHFR 677 and 1298 genotype frequencies was observed between 237 cases and 377 controls. Individuals with the MTHFR 677TT, 1298AC, and 1298CC genotypes have a decreased risk of adult ALL, but not acute myeloid leukemia, which suggests that folate inadequacy may play a key role in the development of ALL.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

P75/AIRM1 is a recently identified surface molecule that belongs to the sialoadhesin family and displays homology with the myeloid cell antigen CD33. In lymphoid cells, p75/AIRM1 is confined to natural killer cells and mediates inhibition of their cytolytic activity. In this study, we show that p75/AIRM1 is also expressed by cells of the myelomonocytic cell lineage, in which it appears at a later stage as compared with CD33. In vitro proliferation and differentiation of cord blood-derived CD34+ cells (induced by stem cell factor and granulocyte–macrophage colony-stimulating factor) were consistently inhibited by the addition of anti-p75/AIRM1 mAb. Engagement of CD33 led to inhibition in some experiments. A sharp decrease of cell proliferation/survival was detected in all three p75/AIRM1+ chronic myeloid leukemias analyzed when cultured in the presence of either anti-p75/AIRM1 or anti-CD33 mAbs. Thus, the present study suggests that p75/AIRM1 and CD33 may play a regulatory role in normal myelopoiesis and may be viewed as suitable target molecules to counteract the proliferation/survival of chronic myeloid leukemias.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cells of most tissues require adhesion to a surface to grow. However, for hematopoietic cells, both stimulation and inhibition of proliferation by adhesion to extracellular matrix components have been described. Furthermore, it has been suggested that progenitor cells from chronic myelogenous leukemia show decreased β1 integrin-mediated adhesion to fibronectin, resulting in increased proliferation and abnormal trafficking. However, we show here that the chronic myelogenous leukemia-specific fusion protein p210bcr/abl stimulates the expression of α5β1 integrins and induces adhesion to fibronectin when expressed in the myeloid cell line 32D. Moreover, proliferation of both p210bcr/abl-transfected 32D (32Dp210) cells and untransfected 32D cells is stimulated by immobilized fibronectin. Cell cycle analysis revealed that nonadherent 32D and 32Dp210 cells are arrested in late G1 or early S phase, whereas the adherent fractions continue cycling. Although both adherent and nonadherent p210bcr/abl-transfected and parental 32D cells express equal amounts of cyclin A, a protein necessary for cell cycle progression at the G1/S boundary, cyclin A complexes immunoprecipitated from 32D cells cultured on immobilized fibronectin were found to be catalytically inactive in nonadherent but not in adherent cells. In addition, as compared with untransfected 32D cells, cyclin A immunoprecipitates from 32Dp210 cells exhibited a greatly elevated kinase activity and remained partially active irrespective of the adhesion status. The lack of cyclin A/cyclin-dependent kinase (CDK) 2 activity in nonadherent 32D cells appeared to result from increased expression and cyclin A complex formation of the CDK inhibitor p27Kip1. Taken together, our results indicate that adhesion stimulates cell cycle progression of hematopoietic cells by down-regulation of p27Kip1, resulting in activation of cyclin A/CDK2 complexes and subsequent transition through the G1/S adhesion checkpoint.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The MLL-ELL fusion gene results from the translocation t(11;19)(q23;p13.1) that is associated with de novo and therapy-related acute myeloid leukemia. To study its transforming properties, we retrovirally transduced primary murine hematopoietic progenitors and assessed their growth properties both in vitro and in vivo. MLL-ELL increased the proliferation of myeloid colony-forming cells in methylcellulose cultures upon serial replating, whereas overexpression of ELL alone had no effect. We reconstituted lethally irradiated congenic mice with bone marrow progenitors transduced with MLL-ELL or the control MIE vector encoding the enhanced green fluorescent protein. When the peripheral blood of the mice was analyzed 11–13 weeks postreconstitution, we found that the engraftment of the MLL-ELL-transduced cells was superior to that of the MIE controls. At this time point, the contribution of the donor cells was normally distributed among the myeloid and nonmyeloid compartments. Although all of the MIE animals (n = 10) remained healthy for more than a year, all of the MLL-ELL mice (n = 20) succumbed to monoclonal or pauciclonal acute myeloid leukemias within 100–200 days. The leukemic cells were readily transplantable to secondary recipients and could be established as immortalized cell lines in liquid cultures. These studies demonstrate the enhancing effect of MLL-ELL on the proliferative potential of myeloid progenitors as well as its causal role in the genesis of acute myeloid leukemias.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

p75/AIRM-1 is a recently identified inhibitory receptor expressed by natural killer and myeloid cells displaying high homology with CD33. Crosslinking of p75/AIRM-1 or CD33 has been shown to sharply inhibit the in vitro proliferation of both normal myeloid cells and chronic myeloid leukemias. In this study, we analyzed acute myeloid leukemic cells for the expression of p75/AIRM-1. p75/AIRM-1 marked the M5 (11/12) and M4 (2/2) but not the M1, M2, and M3 subtypes according to the French–American–British classification. Cell samples from 12 acute myeloid leukemias were cultured in the presence of granulocyte/macrophage colony-stimulating factor. Addition to these cultures of anti-CD33 antibody resulted in ≈70% inhibition of cell proliferation as assessed by [3H]thymidine uptake or by the recovery of viable cells. Anti-p75/AIRM-1 antibody exerted a strong inhibitory effect only in two cases characterized by a high in vitro proliferation rate. After crosslinking of CD33 (but not of p75/AIRM-1), leukemic cells bound Annexin V and displayed changes in their light-scattering properties and nucleosomal DNA fragmentation, thus providing evidence for the occurrence of apoptotic cell death. Remarkably, when anti-CD33 antibody was used in combination with concentrations of etoposide insufficient to induce apoptosis when used alone, a synergistic effect could be detected in the induction of leukemic cell death. These studies provide the rationale for new therapeutic approaches in myeloid leukemias by using both chemotherapy and apoptosis-inducing mAbs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Myeloid leukemia M1 cells can be induced for growth arrest and terminal differentiation into macrophages in response to interleukin 6 (IL-6) or leukemia inhibitory factor (LIF). Recently, a large number of cytokines and growth factors have been shown to activate the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. In the case of IL-6 and LIF, which share a signal transducing receptor gp130, STAT3 is specifically tyrosine-phosphorylated and activated by stimulation with each cytokine in various cell types. To know the role of JAK-STAT pathway in M1 differentiation, we have constructed dominant negative forms of STAT3 and established M1 cell lines that constitutively express them. These M1 cells that overexpressed dominant negative forms showed no induction of differentiation-associated markers including Fc gamma receptors, ferritin light chain, and lysozyme after treatment with IL-6. Expression of either c-myb or c-myc was not downregulated. Furthermore, IL-6- and LIF-mediated growth arrest and apoptosis were completely blocked. Thus these findings demonstrate that STAT3 activation is the critical step in a cascade of events that leads to terminal differentiation of M1 cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Overexpression of wild-type p53 in M1 myeloid leukemia cells induces apoptotic cell death that was suppressed by the calcium ionophore A23187 and the calcium ATPase inhibitor thapsigargin (TG). This suppression of apoptosis by A23187 or TG was associated with suppression of caspase activation but not with suppression of wild-type-p53-induced expression of WAF-1, mdm-2, or FAS. In contrast to suppression of apoptosis by the cytokines interleukin 6 (IL-6) and interferon γ, a protease inhibitor, or an antioxidant, suppression of apoptosis by A23187 or TG required extracellular Ca2+ and was specifically abolished by the calcineurin inhibitor cyclosporin A. IL-6 induced immediate early activation of junB and zif/268 (Egr-1) but A23187 and TG did not. A23187 and TG also suppressed induction of apoptosis by doxorubicin or vincristine in M1 cells that did not express p53 by a cyclosporin A-sensitive mechanism. Suppression of apoptosis by A23187 or TG was not associated with autocrine production of IL-6. Apoptosis induced in IL-6-primed M1 cells after IL-6 withdrawal was not suppressed by A23187 or TG but was suppressed by the cytokines IL-6, IL-3, or interferon γ. The results indicate that these Ca2+-mobilizing compounds can suppress some pathways of apoptosis suppressed by cytokines but do so by a different mechanism.