210 resultados para arabidopsis
Resumo:
We have investigated physical distances and directions of transposition of the maize transposable element Ac in Arabidopsis thaliana. We prepared a transferred DNA (T-DNA) construct that carried a non-autonomous derivative of Ac with a site for cleavage by endonuclease I-SceI (designated dAc-I-RS element). Another cleavage site was also introduced into the T-DNA region outside dAc-I-RS. Three transgenic Arabidopsis plants were generated, each of which had a single copy of the T-DNA at a different chromosomal location. These transgenic plants were crossed with the Arabidopsis that carried the gene for Ac transposase and progeny in which dAc-I-RS had been transposed were isolated. After digestion of the genomic DNA of these progeny with endonuclease I-SceI, sizes of segment of DNA were determined by pulse-field gel electrophoresis. We also performed linkage analysis for the transposed elements and sites of mutations near the elements. Our results showed that 50% of all transposition events had occurred within 1,700 kb on the same chromosome, with 35% within 200 kb, and that the elements transposed in both directions on the chromosome with roughly equal probability. The data thus indicate that the Ac–Ds system is most useful for tagging of genes that are present within 200 kb of the chromosomal site of Ac in Arabidopsis. In addition, determination of the precise localization of the transposed dAc-I-RS element should definitely assist in map-based cloning of genes around insertion sites.
Resumo:
Flavonoids are secondary metabolites derived from phenylalanine and acetate metabolism that perform a variety of essential functions in higher plants. Studies over the past 30 years have supported a model in which flavonoid metabolism is catalyzed by an enzyme complex localized to the endoplasmic reticulum [Hrazdina, G. & Wagner, G. J. (1985) Arch. Biochem. Biophys. 237, 88–100]. To test this model further we assayed for direct interactions between several key flavonoid biosynthetic enzymes in developing Arabidopsis seedlings. Two-hybrid assays indicated that chalcone synthase, chalcone isomerase (CHI), and dihydroflavonol 4-reductase interact in an orientation-dependent manner. Affinity chromatography and immunoprecipitation assays further demonstrated interactions between chalcone synthase, CHI, and flavonol 3-hydroxylase in lysates from Arabidopsis seedlings. These results support the hypothesis that the flavonoid enzymes assemble as a macromolecular complex with contacts between multiple proteins. Evidence was also found for posttranslational modification of CHI. The importance of understanding the subcellular organization of elaborate enzyme systems is discussed in the context of metabolic engineering.
Resumo:
The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.
Resumo:
We describe mutations of three genes in Arabidopsis thaliana—extra cotyledon1 (xtc1), extra cotyledon2 (xtc2), and altered meristem programming1 (amp1)—that transform leaves into cotyledons. In all three of these mutations, this transformation is associated with a change in the timing of events in embryogenesis. xtc1 and xtc2 delay the morphogenesis of the embryo proper at the globular-to-heart transition but permit the shoot apex to develop to an unusually advanced stage late in embryogenesis. Both mutations have little or no effect on seed maturation and do not affect the viability of the shoot or the rate of leaf initiation after germination. amp1 perturbs the pattern of cell division at an early globular stage, dramatically increases the size of the shoot apex and, like xtc1 and xtc2, produces enlarged leaf primordia during seed development. These unusual phenotypes suggest that these genes play important regulatory roles in embryogenesis and demonstrate that the development of the shoot apical meristem and the development of the embryo proper are regulated by independent processes that must be temporally coordinated to ensure normal organ identity.
Resumo:
Continuous growth and development in plants are accomplished by meristems, groups of undifferentiated cells that persist as stem cells and initiate organs. While the structures of the apical and floral meristems in dicotyledonous plants have been well described, little is known about the underlying molecular mechanisms controlling cell proliferation and differentiation in these structures. We have shown previously that the CLAVATA1 (CLV1) gene in Arabidopsis encodes a receptor kinase-like protein that controls the size of the apical and floral meristems. Here, we show that KAPP, a gene encoding a kinase-associated protein phosphatase, is expressed in apical and young floral meristems, along with CLV1. Overexpression of KAPP mimics the clv1 mutant phenotype. Furthermore, CLV1 has kinase activity: it phosphorylates both itself and KAPP. Finally, KAPP binds and dephosphorylates CLV1. We present a model where KAPP functions as a negative regulator of the CLAVATA1 signal transduction pathway.
Resumo:
T-DNA nuclear import is a central event in genetic transformation of plant cells by Agrobacterium. Presumably, the T-DNA transport intermediate is a single-stranded DNA molecule associated with two bacterial proteins, VirD2 and VirE2, which most likely mediate the transport process. While VirE2 cooperatively coats the transported single-stranded DNA, VirD2 is covalently attached to its 5′ end. To better understand the mechanism of VirD2 action, a cellular receptor for VirD2 was identified and its encoding gene cloned from Arabidopsis. The identified protein, designated AtKAPα, specifically bound VirD2 in vivo and in vitro. VirD2–AtKAPα interaction was absolutely dependent on the carboxyl-terminal bipartite nuclear localization signal sequence of VirD2. The deduced amino acid sequence of AtKAPα was homologous to yeast and animal nuclear localization signal-binding proteins belonging to the karyopherin α family. Indeed, AtKAPα efficiently rescued a yeast mutant defective for nuclear import. Furthermore, AtKAPα specifically mediated transport of VirD2 into the nuclei of permeabilized yeast cells.
Resumo:
Homologous recombination contributes both to the generation of allelic diversity and to the preservation of genetic information. In plants, a lack of suitable experimental material has prevented studies of the regulatory and enzymatic aspects of recombination in somatic and meiotic cells. We have isolated nine Arabidopsis thaliana mutants hypersensitive to x-ray irradiation (xrs) and examined their recombination properties. For the three xrs loci described here, single recessive mutations were found to confer simultaneous hypersensitivities to the DNA-damaging chemicals mitomycin C (MMCs) and/or methyl methanesulfonate (MMSs) and alterations in homologous recombination. Mutant xrs9 (Xrays, MMSs) is reduced in both somatic and meiotic recombination and resembles yeast mutants of the rad52 epistatic group. xrs11 (Xrays, MMCs) is deficient in the x-ray-mediated stimulation of homologous recombination in somatic cells in a manner suggesting a specific signaling defect. xrs4 (Xrays, MMSs, MMCs) has a significant deficiency in somatic recombination, but this is accompanied by meiotic hyper-recombination. A corresponding phenotype has not been reported in other systems and thus this indicates a novel, plant-specific regulatory circuit linking mitotic and meiotic recombination.
Resumo:
Proton/sulfate cotransporters in the plasma membranes are responsible for uptake of the environmental sulfate used in the sulfate assimilation pathway in plants. Here we report the cloning and characterization of an Arabidopsis thaliana gene, AST68, a new member of the sulfate transporter gene family in higher plants. Sequence analysis of cDNA and genomic clones of AST68 revealed that the AST68 gene is composed of 10 exons encoding a 677-aa polypeptide (74.1 kDa) that is able to functionally complement a Saccharomyces cerevisiae mutant lacking a sulfate transporter gene. Southern hybridization and restriction fragment length polymorphism mapping confirmed that AST68 is a single-copy gene that maps to the top arm of chromosome 5. Northern hybridization analysis of sulfate-starved plants indicated that the steady-state mRNA abundance of AST68 increased specifically in roots up to 9-fold by sulfate starvation. In situ hybridization experiments revealed that AST68 transcripts were accumulated in the central cylinder of sulfate-starved roots, but not in the xylem, endodermis, cortex, and epidermis. Among all the structural genes for sulfate assimilation, sulfate transporter (AST68), APS reductase (APR1), and serine acetyltransferase (SAT1) were inducible by sulfate starvation in A. thaliana. The sulfate transporter (AST68) exhibited the most intensive and specific response in roots, indicating that AST68 plays a central role in the regulation of sulfate assimilation in plants.
Resumo:
We cloned two hemoglobin genes from Arabidopsis thaliana. One gene, AHB1, is related in sequence to the family of nonsymbiotic hemoglobin genes previously identified in a number of plant species (class 1). The second hemoglobin gene, AHB2, represents a class of nonsymbiotic hemoglobin (class 2) related in sequence to the symbiotic hemoglobin genes of legumes and Casuarina. The properties of these two hemoglobins suggest that the two families of nonsymbiotic hemoglobins may differ in function from each other and from the symbiotic hemoglobins. AHB1 is induced, in both roots and rosette leaves, by low oxygen levels. Recombinant AHB1 has an oxygen affinity so high as to make it unlikely to function as an oxygen transporter. AHB2 is expressed at a low level in rosette leaves and is low temperature-inducible. AHB2 protein has a lower affinity for oxygen than AHB1 but is similar to AHB1 in having an unusually low, pH-sensitive oxygen off-rate.
Resumo:
Collectively, the xanthophyll class of carotenoids perform a variety of critical roles in light harvesting antenna assembly and function. The xanthophyll composition of higher plant photosystems (lutein, violaxanthin, and neoxanthin) is remarkably conserved, suggesting important functional roles for each. We have taken a molecular genetic approach in Arabidopsis toward defining the respective roles of individual xanthophylls in vivo by using a series of mutant lines that selectively eliminate and substitute a range of xanthophylls. The mutations, lut1 and lut2 (lut = lutein deficient), disrupt lutein biosynthesis. In lut2, lutein is replaced mainly by a stoichiometric increase in violaxanthin and antheraxanthin. A third mutant, aba1, accumulates normal levels of lutein and substitutes zeaxanthin for violaxanthin and neoxanthin. The lut2aba1 double mutant completely lacks lutein, violaxanthin, and neoxanthin and instead accumulates zeaxanthin. All mutants were viable in soil and had chlorophyll a/b ratios ranging from 2.9 to 3.5 and near wild-type rates of photosynthesis. However, mutants accumulating zeaxanthin exhibited a delayed greening virescent phenotype, which was most severe and often lethal when zeaxanthin was the only xanthophyll present. Chlorophyll fluorescence quenching kinetics indicated that both zeaxanthin and lutein contribute to nonphotochemical quenching; specifically, lutein contributes, directly or indirectly, to the rapid rise of nonphotochemical quenching. The results suggest that the normal complement of xanthophylls, while not essential, is required for optimal assembly and function of the light harvesting antenna in higher plants.
Resumo:
The twn2 mutant of Arabidopsis exhibits a defect in early embryogenesis where, following one or two divisions of the zygote, the decendents of the apical cell arrest. The basal cells that normally give rise to the suspensor proliferate abnormally, giving rise to multiple embryos. A high proportion of the seeds fail to develop viable embryos, and those that do, contain a high proportion of partially or completely duplicated embryos. The adult plants are smaller and less vigorous than the wild type and have a severely stunted root. The twn2-1 mutation, which is the only known allele, was caused by a T-DNA insertion in the 5′ untranslated region of a putative valyl-tRNA synthetase gene, valRS. The insertion causes reduced transcription of the valRS gene in reproductive tissues and developing seeds but increased expression in leaves. Analysis of transcript initiation sites and the expression of promoter–reporter fusions in transgenic plants indicated that enhancer elements inside the first two introns interact with the border of the T-DNA to cause the altered pattern of expression of the valRS gene in the twn2 mutant. The phenotypic consequences of this unique mutation are interpreted in the context of a model, suggested by Vernon and Meinke [Vernon, D. M. & Meinke, D. W. (1994) Dev. Biol. 165, 566–573], in which the apical cell and its decendents normally suppress the embryogenic potential of the basal cell and its decendents during early embryo development.
Resumo:
UV radiation induces two major DNA damage products, the cyclobutane pyrimidine dimer (CPD) and, at a lower frequency, the pyrimidine (6–4) pyrimidinone dimer (6–4 product). Although Escherichia coli and Saccharomyces cerevisiae produce a CPD-specific photolyase that eliminates only this class of dimer, Arabidopsis thaliana, Drosophila melanogaster, Crotalus atrox, and Xenopus laevis have recently been shown to photoreactivate both CPDs and 6–4 products. We describe the isolation and characterization of two new classes of mutants of Arabidopsis, termed uvr2 and uvr3, that are defective in the photoreactivation of CPDs and 6–4 products, respectively. We demonstrate that the CPD photolyase mutation is genetically linked to a DNA sequence encoding a type II (metazoan) CPD photolyase. In addition, we are able to generate plants in which only CPDs or 6–4 products are photoreactivated in the nuclear genome by exposing these mutants to UV light and then allowing them to repair one or the other class of dimers. This provides us with a unique opportunity to study the biological consequences of each of these two major UV-induced photoproducts in an intact living system.
Resumo:
The Arabidopsis PAD4 gene previously was found to be required for expression of multiple defense responses including camalexin synthesis and PR-1 gene expression in response to infection by the bacterial pathogen Pseudomonas syringae pv. maculicola. This report describes the isolation of PAD4. The predicted PAD4 protein sequence displays similarity to triacyl glycerol lipases and other esterases. The PAD4 transcript was found to accumulate after P. syringae infection or treatment with salicylic acid (SA). PAD4 transcript levels were very low in infected pad4 mutants. Treatment with SA induced expression of PAD4 mRNA in pad4–1, pad4–3, and pad4–4 plants but not in pad4–2 plants. Induction of PAD4 expression by P. syringae was independent of the regulatory factor NPR1 but induction by SA was NPR1-dependent. Taken together with the previous observation that pad4 mutants have a defect in accumulation of SA upon pathogen infection, these results suggest that PAD4 participates in a positive regulatory loop that increases SA levels, thereby activating SA-dependent defense responses.
Resumo:
We cloned and characterized a cDNA corresponding to a cdc5+ homolog of the higher plant, Arabidopsis thaliana. The cDNA, named AtCDC5 cDNA, encodes a polypeptide of 844 amino acid residues. The amino acid sequence of N-terminal one-fourth region of the predicted protein bears significant similarity to that of Schizosaccharomyces pombe Cdc5 and Myb-related proteins. Overexpression of the AtCDC5 cDNA in S. pombe cells is able to complement the growth defective phenotype of a cdc5 temperature-sensitive mutant. These results indicate that the AtCDC5 gene is a plant counterpart of S. pombe cdc5+. This is the first report of a cdc5+-like gene in a multicellular organism. We also demonstrated that a recombinant AtCDC5 protein possesses a sequence specific DNA binding activity (CTCAGCG) and the AtCDC5 gene is expressed extensively in shoot and root meristems. In addition, we cloned a PCR fragment corresponding to the DNA binding domain of human Cdc5-like protein. These results strongly suggest that Cdc5-like protein exists in all eukaryotes and may function in cell cycle regulation.
Resumo:
Three different cDNAs, Prh-19, Prh-26, and Prh-43 [3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase homolog], have been isolated by complementation of an Escherichia coli cysH mutant, defective in PAPS reductase activity, to prototrophy with an Arabidopsis thaliana cDNA library in the expression vector λYES. Sequence analysis of the cDNAs revealed continuous open reading frames encoding polypeptides of 465, 458, and 453 amino acids, with calculated molecular masses of 51.3, 50.5, and 50.4 kDa, respectively, that have strong homology with fungal, yeast, and bacterial PAPS reductases. However, unlike microbial PAPS reductases, each PRH protein has an N-terminal extension, characteristic of a plastid transit peptide, and a C-terminal extension that has amino acid and deduced three-dimensional homology to thioredoxin proteins. Adenosine 5′-phosphosulfate (APS) was shown to be a much more efficient substrate than PAPS when the activity of the PRH proteins was tested by their ability to convert 35S-labeled substrate to acid-volatile 35S-sulfite. We speculate that the thioredoxin-like domain is involved in catalytic function, and that the PRH proteins may function as novel “APS reductase” enzymes. Southern hybridization analysis showed the presence of a small multigene family in the Arabidopsis genome. RNA blot hybridization with gene-specific probes revealed for each gene the presence of a transcript of ≈1.85 kb in leaves, stems, and roots that increased on sulfate starvation. To our knowledge, this is the first report of the cloning and characterization of plant genes that encode proteins with APS reductase activity and supports the suggestion that APS can be utilized directly, without activation to PAPS, as an intermediary substrate in reductive sulfate assimilation.