55 resultados para antigen-antibody
Resumo:
Catalytic antibodies have shown great promise for catalyzing a tremendously diverse set of natural and unnatural chemical transformations. However, few catalytic antibodies have efficiencies that approach those of natural enzymes. In principle, random mutagenesis procedures such as phage display could be used to improve the catalytic activities of existing antibodies; however, these studies have been hampered by difficulties in the recombinant expression of antibodies. Here, we have grafted the antigen binding loops from a murine-derived catalytic antibody, 17E8, onto a human antibody framework in an effort to overcome difficulties associated with recombinant expression and phage display of this antibody. “Humanized” 17E8 retained similar catalytic and hapten binding properties as the murine antibody while levels of functional Fab displayed on phage were 200-fold higher than for a murine variable region/human constant region chimeric Fab. This construct was used to prepare combinatorial libraries. Affinity panning of these resulted in the selection of variants with 2- to 8-fold improvements in binding affinity for a phosphonate transition-state analog. Surprisingly, none of the affinity-matured variants was more catalytically active than the parent antibody and some were significantly less active. By contrast, a weaker binding variant was identified with 2-fold greater catalytic activity and incorporation of a single substitution (Tyr-100aH → Asn) from this variant into the parent antibody led to a 5-fold increase in catalytic efficiency. Thus, phage display methods can be readily used to optimize binding of catalytic antibodies to transition-state analogs, and when used in conjunction with limited screening for catalysis can identify variants with higher catalytic efficiencies.
Resumo:
Recent advances in our understanding of the immune response are allowing for the logical design of new approaches to cancer immunization. One area of interest is the development of new immune adjuvants. Immunostimulatory oligodeoxynucleotides containing the CpG motif (CpG ODN) can induce production of a wide variety of cytokines and activate B cells, monocytes, dendritic cells, and NK cells. Using the 38C13 B cell lymphoma model, we assessed whether CpG ODN can function as immune adjuvants in tumor antigen immunization. The idiotype served as the tumor antigen. Select CpG ODN were as effective as complete Freund’s adjuvant at inducing an antigen-specific antibody response but were associated with less toxicity. These CpG ODN induced a higher titer of antigen-specific IgG2a than did complete Freund’s adjuvant, suggesting an enhanced TH1 response. Mice immunized with CpG ODN as an adjuvant were protected from tumor challenge to a degree similar to that seen in mice immunized with complete Freund’s adjuvant. We conclude that CpG ODN are effective as immune adjuvants and are attractive as part of a tumor immunization strategy.
Resumo:
Cancer relapse after surgery is a common occurrence, most frequently resulting from the outgrowth of minimal residual disease in the form of metastases. We examined the effectiveness of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade as an adjunctive immunotherapy to reduce metastatic relapse after primary prostate tumor resection. For these studies, we developed a murine model in which overt metastatic outgrowth of TRAMP-C2 (C2) prostate cancer ensues after complete primary tumor resection. Metastatic relapse in this model occurs reliably and principally within the draining lymph nodes in close proximity to the primary tumor, arising from established metastases present at the time of surgery. Using this model, we demonstrate that adjunctive CTLA-4 blockade administered immediately after primary tumor resection reduces metastatic relapse from 97.4 to 44%. Consistent with this, lymph nodes obtained 2 weeks after treatment reveal marked destruction or complete elimination of C2 metastases in 60% of mice receiving adjunctive anti-CTLA-4 whereas 100% of control antibody-treated mice demonstrate progressive C2 lymph node replacement. Our study demonstrates the potential of adjunctive CTLA-4 blockade immunotherapy to reduce cancer relapse emanating from minimal residual metastatic disease and may have broader implications for improving the capability of immunotherapy by combining such forms of therapy with other cytoreductive measures including surgery.
Resumo:
The hepatitis B virus (HBV) nucleocapsid or core antigen (HBcAg) is extremely immunogenic during infection and after immunization. For example, during many chronic infections, HBcAg is the only antigen capable of eliciting an immune response, and nanogram amounts of HBcAg elicit antibody production in mice. Recent structural analysis has revealed a number of characteristics that may help explain this potent immunogenicity. Our analysis of how the HBcAg is presented to the immune system revealed that the HBcAg binds to specific membrane Ig (mIg) antigen receptors on a high frequency of resting, murine B cells sufficiently to induce B7.1 and B7.2 costimulatory molecules. This enables HBcAg-specific B cells from unprimed mice to take up, process, and present HBcAg to naive Th cells in vivo and to T cell hybridomas in vitro approximately 105 times more efficiently than classical macrophage or dendritic antigen-presenting cells (APC). These results reveal a structure–function relation for the HBcAg, confirm that B cells can function as primary APC, explain the enhanced immunogenicity of HBcAg, and may have relevance for the induction and/or maintenance of chronic HBV infection.
Resumo:
Staphylococcus aureus produces a virulence factor, protein A (SpA), that contains five homologous Ig-binding domains. The interactions of SpA with the Fab region of membrane-anchored Igs can stimulate a large fraction of B cells, contributing to lymphocyte clonal selection. To understand the molecular basis for this activity, we have solved the crystal structure of the complex between domain D of SpA and the Fab fragment of a human IgM antibody to 2.7-Å resolution. In the complex, helices II and III of domain D interact with the variable region of the Fab heavy chain (VH) through framework residues, without the involvement of the hypervariable regions implicated in antigen recognition. The contact residues are highly conserved in human VH3 antibodies but not in other families. The contact residues from domain D also are conserved among all SpA Ig-binding domains, suggesting that each could bind in a similar manner. Features of this interaction parallel those reported for staphylococcal enterotoxins that are superantigens for many T cells. The structural homology between Ig VH regions and the T-cell receptor Vβ regions facilitates their comparison, and both types of interactions involve lymphocyte receptor surface remote from the antigen binding site. However, T-cell superantigens reportedly interact through hydrogen bonds with T-cell receptor Vβ backbone atoms in a primary sequence-independent manner, whereas SpA relies on a sequence-restricted conformational binding with residue side chains, suggesting that this common bacterial pathogen has adopted distinct molecular recognition strategies for affecting large sets of B and T lymphocytes.
Resumo:
Recognition of self is emerging as a theme for the immune recognition of human cancer. One question is whether the immune system can actively respond to normal tissue autoantigens expressed by cancer cells. A second but related question is whether immune recognition of tissue autoantigens can actually induce tumor rejection. To address these issues, a mouse model was developed to investigate immune responses to a melanocyte differentiation antigen, tyrosinase-related protein 1 (or gp75), which is the product of the brown locus. In mice, immunization with purified syngeneic gp75 or syngeneic cells expressing gp75 failed to elicit antibody or cytotoxic T-cell responses to gp75, even when different immune adjuvants and cytokines were included. However, immunization with altered sources of gp75 antigen, in the form of either syngeneic gp75 expressed in insect cells or human gp75, elicited autoantibodies to gp75. Immunized mice rejected metastatic melanomas and developed patchy depigmentation in their coats. These studies support a model of tolerance maintained to a melanocyte differentiation antigen where tolerance can be broken by presenting sources of altered antigen (e.g., homologous xenogeneic protein or protein expressed in insect cells). Immune responses induced with these sources of altered antigen reacted with various processed forms of native, syngeneic protein and could induce both tumor rejection and autoimmunity.
Resumo:
IgG antibodies can suppress more than 99% of the antibody response against the antigen to which they bind. This is used clinically to prevent rhesus-negative (Rh−) women from becoming immunized against Rh+ erythrocytes from their fetuses. The suppressive mechanism is poorly understood, but it has been proposed that IgG/erythrocyte complexes bind to the inhibitory Fc receptor for IgG (FcγRIIB) on the B cell surface, thereby triggering negative signals that turn off the B cell. We show that IgG induces the same degree of suppression of the response to sheep erythrocytes in animals lacking the known IgG-binding receptors FcγRIIB, FcγRI + III, FcγRI + IIB + III, and FcRn (the neonatal Fc receptor) as in wild-type animals. Reinvestigation of the ability of F(ab′)2 fragments to suppress antibody responses demonstrated that they were nearly as efficient as intact IgG. In addition, monoclonal IgE also was shown to be suppressive. These findings suggest that IgG inhibits antibody responses through Fc-independent mechanisms, most likely by masking of antigenic epitopes, thereby preventing B cells from binding and responding to antigen. In agreement with this, we show that T cell priming is not abolished by passively administered IgG. The results have implications for the understanding of in vivo regulation of antibody responses and Rh prophylaxis.
Resumo:
Antibodies to phosphatidylcholine (PtC), a common constituent of mammalian and bacterial cell membranes, represent a large proportion of the natural antibody repertoire in mice. Previous studies of several mouse strains (e.g., C57BL/6) have shown that anti-PtC antibodies are mainly encoded by the VH11 and VH12 immunoglobulin heavy chain variable region gene families. We show here, however, that VH11 and VH12 encode only a small proportion of the anti-PtC antibodies in BALB/c mice. Instead, VHQ52-encoded antibodies predominate in this strain. In addition, two-thirds of the cells expressing VHQ52 family genes use a single gene (which, interestingly, has been previously shown to predominate in the anti-oxazolone response). We also show here that in anti-PtC antibodies from all strains, the distinctive antigen-binding sites associated with VHQ52 differ substantially from those associated with VH11 and VH12. That is, VHQ52-containing transcripts preferentially use the joining region JH4 rather than JH1 and exhibit more diverse complementarity-determining region 3 (CDR3) junctions with more N-region nucleotide additions at the gene segment junctions. Thus, the VH gene family that predominates in the anti-PtC repertoire differs among mouse strains, whereas the distinctive VHDJH rearrangements (CDR3, JH) associated with each VH gene family are similar in all strains. We discuss these findings in the context of a recent hypothesis suggesting that CDR3 structure, independent of VH framework, is sufficient to define the specificity of an antibody.
Resumo:
Conjugation of drugs with antibodies to surface endothelial antigens is a potential strategy for drug delivery to endothelium. We studied antibodies to platelet-endothelial adhesion molecule 1 (PECAM-1, a stably expressed endothelial antigen) as carriers for vascular immunotargeting. Although 125I-labeled anti-PECAM bound to endothelial cells in culture, the antibody was poorly internalized by the cells and accumulated poorly after intravenous administration in mice and rats. However, conjugation of biotinylated anti-PECAM (b-anti-PECAM) with streptavidin (SA) markedly stimulated uptake and internalization of anti-PECAM by endothelial cells and by cells expressing PECAM. In addition, conjugation with streptavidin markedly stimulated uptake of 125I-labeled b-anti-PECAM in perfused rat lungs and in the lungs of intact animals after either intravenous or intraarterial injection. The antioxidant enzyme catalase conjugated with b-anti-PECAM/SA bound to endothelial cells in culture, entered the cells, escaped intracellular degradation, and protected the cells against H2O2-induced injury. Anti-PECAM/SA/125I-catalase accumulated in the lungs after intravenous injection or in the perfused rat lungs and protected these lungs against H2O2-induced injury. Thus, modification of a poor carrier antibody with biotin and SA provides an approach for facilitation of antibody-mediated drug targeting. Anti-PECAM/SA is a promising candidate for vascular immunotargeting of bioactive drugs.
Resumo:
A large library of phage-displayed human single-chain Fv antibodies (scFv), containing 6.7 × 109 members, was generated by improving the steps of library construction. Fourteen different protein antigens were used to affinity select antibodies from this library. A panel of specific antibodies was isolated with each antigen, and each panel contained an average of 8.7 different scFv. Measurements of antibody–antigen interactions revealed several affinities below 1 nM, comparable to affinities observed during the secondary murine immune response. In particular, four different scFv recognizing the ErbB2 protein had affinities ranging from 220 pM to 4 nM. Antibodies derived from the library proved to be useful reagents for immunoassays. For example, antibodies generated to the Chlamydia trachomatis elementary bodies stained Chlamydia-infected cells, but not uninfected cells. These results demonstrate that phage antibody libraries are ideally suited for the rapid production of panels of high-affinity mAbs to a wide variety of protein antigens. Such libraries should prove especially useful for generating reagents to study the function of gene products identified by genome projects.
Resumo:
Successful neonatal immunization of humans has proven difficult. We have evaluated CpG-containing oligonucleotides as an adjuvant for immunization of young mice (1–14 days old) against hepatitis B virus surface antigen. The protein-alum-CpG formulation, like the DNA vaccine, produced seroconversion of the majority of mice immunized at 3 or 7 days of age, compared with 0–10% with the protein-alum or protein-CpG formulations. All animals, from neonates to adults, immunized with the protein-alum vaccine exhibited strong T helper (Th)2-like responses [predominantly IgG1, weak or absent cytotoxic T lymphocytes (CTL)]. Th2-type responses also were induced in young mice with protein-CpG (in 1-, 3-, and 7-day-old mice) and protein-alum-CpG (in 1- and 3-day-old mice) but immunization carried out at older ages gave mixed Th1/Th2 (Th0) responses. DNA vaccines gave Th0-like responses when administered at 1 and 7 days of age and Th1-like (predominantly IgG2a and CTL) responses with 14-day-old or adult mice. Surprisingly, the protein-alum-CpG formulation was better than the DNA vaccine for percentage of seroconversion, speed of appearance, and peak titer of the antibody response, as well as prevalence and strength of CTL. These findings may have important implications for immunization of human infants.
Resumo:
In most vertebrate embryos and neonates studied to date unique antigen receptors (antibodies and T cell receptors) are expressed that possess a limited immune repertoire. We have isolated a subclass of IgM, IgM1gj, from the nurse shark Ginglymostoma cirratum that is preferentially expressed in neonates. The variable (V) region gene encoding the heavy (H) chain underwent V-D-J rearrangement in germ cells (“germline-joined”). Such H chain V genes were discovered over 10 years ago in sharks but until now were not shown to be expressed at appreciable levels; we find expression of H1gj in primary and secondary lymphoid tissues early in life, but in adults only in primary lymphoid tissue, which is identified in this work as the epigonal organ. H1gj chain associates covalently with light (L) chains and is most similar in sequence to IgM H chains, but like mammalian IgG has three rather than the four IgM constant domains; deletion of the ancestral IgM C2 domain thus defines both IgG and IgM1gj. Because sharks are the members of the oldest vertebrate class known to possess antibodies, unique or specialized antibodies expressed early in ontogeny in sharks and other vertebrates were likely present at the inception of the adaptive immune system.
Resumo:
Similarities in the phenotypes of mice deficient for cytotoxic T lymphocyte antigen-4 (CTLA-4) or transforming growth factor-β1 (TGF-β1) and other observations have led to speculation that CTLA-4 mediates its inhibitory effect on T cell activation via costimulation of TGF-β production. Here, we examine the role of TGF-β in CTLA-4-mediated inhibition of T cell activation and of CTLA-4 in the regulation of TGF-β production. Activation of AND TCR transgenic mouse T cells with costimulatory receptor-specific antigen presenting cells results in efficient costimulation of proliferation by CD28 ligation and inhibition by CTLA-4 ligation. Neutralizing antibody to TGF-β does not reverse CTLA-4-mediated inhibition. Also, CTLA-4 ligation equally inhibits proliferation of wild-type, TGF-β1−/−, and Smad3−/− T cells. Further, CTLA-4 engagement does not result in the increased production of either latent or active TGF-β by CD4+ T cells. These results indicate that CTLA-4 ligation does not regulate TGF-β production and that CTLA-4-mediated inhibition can occur independently of TGF-β. Collectively, these data demonstrate that CTLA-4 and TGF-β represent distinct mechanisms for regulation of T cell responses.
Resumo:
The feasibility of using carbohydrate-based vaccines for the immunotherapy of cancer is being actively explored at the present time. Although a number of clinical trials have already been conducted with glycoconjugate vaccines, the optimal design and composition of the vaccines has yet to be determined. Among the candidate antigens being examined is Lewisy (Ley), a blood group-related antigen that is overexpressed on the majority of human carcinomas. Using Ley as a model for specificity, we have examined the role of epitope clustering, carrier structure, and adjuvant on the immunogenicity of Ley conjugates in mice. A glycolipopeptide containing a cluster of three contiguous Ley-serine epitopes and the Pam3Cys immunostimulating moiety was found to be superior to a similar construct containing only one Ley-serine epitope in eliciting antitumor cell antibodies. Because only IgM antibodies were produced by this vaccine, the effect on immunogenicity of coupling the glycopeptide to keyhole limpet hemocyanin was examined; although both IgM and IgG antibodies were formed, the antibodies reacted only with the immunizing structure. Reexamination of the clustered Ley-serine Pam3Cys conjugate with the adjuvant QS-21 resulted in the identification of both IgG and IgM antibodies reacting with tumor cells, thus demonstrating the feasibility of an entirely synthetic carbohydrate-based anticancer vaccine in an animal model.
Resumo:
Serological expression cloning of antigens eliciting a humoral immune response to a syngeneic mouse sarcoma identified pem (mouse placenta and embryonic expression gene) as a new member of the cancer/testis family. To identify the human homologue of pem, mouse pem sequences and pem-related expressed sequence tags from human testis were used as PCR primers for amplification using human testis cDNA. However, rather than pem, another gene, designated OY-TES-1, was isolated and found to be the human homologue of proacrosin binding protein sp32 precursor originally identified in mouse, guinea pig, and pig. OY-TES-1 maps to chromosome 12p12-p13 and contains 10 exons. Southern blot analysis suggests the presence of two OY-TES-1-related genes in the human genome. In normal tissues, OY-TES-1 mRNA was expressed only in testis, whereas in malignant tissues, a variable proportion of a wide array of cancers, including bladder, breast, lung, liver, and colon cancers, expressed OY-TES-1. Serological survey of 362 cancer patients with a range of different cancers showed antibody to OY-TES-1 in 25 patients. No OY-TES-1 sera reactivity was found in 20 normal individuals. These findings indicate that OY-TES-1 is an additional member of the cancer/testis family of antigens and that OY-TES-1 is immunogenic in humans.