100 resultados para alpha tubulin gene


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cells infected with herpes simplex virus 1 (HSV-1) undergo productive or latent infection without exhibiting features characteristic of apoptosis. In this report, we show that HSV-1 induces apoptosis but has evolved a function that blocks apoptosis induced by infection as well as by other means. Specifically, (i) Vero cells infected with a HSV-1 mutant deleted in the regulatory gene alpha 4 (that encodes repressor and transactivating functions), but not those infected with wild-type HSV-1(F), exhibit cytoplasmic blebbing, chromatin condensation, and fragmented DNA detected as a ladder in agarose gels or by labeling free DNA ends with terminal transferase; (ii) Vero cells infected with wild-type HSV-1(F) or cells expressing the alpha 4 gene and infected with the alpha 4- virus did not exhibit apoptosis; (iii) fragmentation of cellular DNA was observed in Vero cells that were mock-infected or infected with the alpha 4- virus and maintained at 39.5 degrees C, but not in cells infected with wild-type virus and maintained at the same temperature. Wild-type strains of HSV-1 with limited extrahuman passages, such as HSV-1 (F), carry a temperature-sensitive lesion in the alpha 4 gene and at 39.5 degrees C only alpha genes are expressed. These results indicate that the product of the alpha 4 gene is able to suppress apoptosis induced by the virus as well by other means.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Few promoters are active at high levels in all cells. Of these, the majority encode structural RNAs transcribed by RNA polymerases I or III and are not accessible for the expression of proteins. An exception are the small nuclear RNAs (snRNAs) transcribed by RNA polymerase II. Although snRNA biosynthesis is unique and thought not to be compatible with synthesis of functional mRNA, we have tested these promoters for their ability to express functional mRNAs. We have used the murine U1a and U1b snRNA gene promoters to express the Escherichia coli lacZ gene and the human alpha-globin gene from either episomal or integrated templates by transfection, or infection into a variety of mammalian cell types. Equivalent expression of beta-galactosidase was obtained from < 250 nucleotides of 5'-flanking sequence containing the complete promoter of either U1 snRNA gene or from the 750-nt cytomegalovirus promoter and enhancer regions. The mRNA was accurately initiated at the U1 start site, efficiently spliced and polyadenylylated, and localized to polyribosomes. Recombinant adenovirus containing the U1b-lacZ chimeric gene transduced and expressed beta-galactosidase efficiently in human 293 cells and airway epithelial cells in culture. Viral vectors containing U1 snRNA promoters may be an attractive alternative to vectors containing viral promoters for persistent high-level expression of therapeutic genes or proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The codon usage of a hybrid bacterial gene encoding a thermostable (1,3-1,4)-beta-glucanase was modified to match that of the barley (1,3-1,4)-beta-glucanase isoenzyme EII gene. Both the modified and unmodified bacterial genes were fused to a DNA segment encoding the barley high-pI alpha-amylase signal peptide downstream of the barley (1,3-1,4)-beta-glucanase isoenzyme EII gene promoter. When introduced into barley aleurone protoplasts, the bacterial gene with adapted codon usage directed synthesis of heat stable (1,3-1,4)-beta-glucanase, whereas activity of the heterologous enzyme was not detectable when protoplasts were transfected with the unmodified gene. In a different expression plasmid, the codon modified bacterial gene was cloned downstream of the barley high-pI alpha-amylase gene promoter and signal peptide coding region. This expression cassette was introduced into immature barley embryos together with plasmids carrying the bar and the uidA genes. Green, fertile plants were regenerated and approximately 75% of grains harvested from primary transformants synthesized thermostable (1,3-1,4)-beta-glucanase during germination. All three trans genes were detected in 17 progenies from a homozygous T1 plant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Little is known about the division of eukaryotic cell organelles and up to now neither in animals nor in plants has a gene product been shown to mediate this process. A cDNA encoding a homolog of the bacterial cell division protein FtsZ, an ancestral tubulin, was isolated from the eukaryote Physcomitrella patens and used to disrupt efficiently the genomic locus in this terrestrial seedless plant. Seven out of 51 transgenics obtained were knockout plants generated by homologous recombination; they were specifically impeded in plastid division with no detectable effect on mitochondrial division or plant morphology. Implications on the theory of endosymbiosis and on the use of reverse genetics in plants are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Null mutations at the misato locus of Drosophila melanogaster are associated with irregular chromosomal segregation at cell division. The consequences for morphogenesis are that mutant larvae are almost devoid of imaginal disk tissue, have a reduction in brain size, and die before the late third-instar larval stage. To analyze these findings, we isolated cDNAs in and around the misato locus, mapped the breakpoints of chromosomal deficiencies, determined which transcript corresponded to the misato gene, rescued the cell division defects in transgenic organisms, and sequenced the genomic DNA. Database searches revealed that misato codes for a novel protein, the N-terminal half of which contains a mixture of peptide motifs found in α-, β-, and γ-tubulins, as well as a motif related to part of the myosin heavy chain proteins. The sequence characteristics of misato indicate either that it arose from an ancestral tubulin-like gene, different parts of which underwent convergent evolution to resemble motifs in the conventional tubulins, or that it arose by the capture of motifs from different tubulin genes. The Saccharomyces cerevisiae genome lacks a true homolog of the misato gene, and this finding highlights the emerging problem of assigning functional attributes to orphan genes that occur only in some evolutionary lineages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have cloned the UNI3 gene in Chlamydomonas and find that it encodes a new member of the tubulin superfamily. Although Uni3p shares significant sequence identity with α-, β-, and γ-tubulins, there is a region of Uni3p that has no similarity to tubulins or other known proteins. Mutant uni3–1 cells assemble zero, one, or two flagella. Pedigree analysis suggests that flagellar number in uni3–1 cells is a function of the age of the cell. The uniflagellate uni3–1 cells show a positional phenotype; the basal body opposite the eyespot templates the single flagellum. A percentage of uni3–1 cells also fail to orient the cleavage furrow properly, and basal bodies have been implicated in the placement of cleavage furrows in Chlamydomonas. Finally when uni3–1 cells are observed by electron microscopy, doublet rather than triplet microtubules are observed at the proximal end of the basal bodies. We propose that the Uni3 tubulin is involved in both the function and cell cycle-dependent maturation of basal bodies/centrioles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using the Escherichia coli lacZ gene to identify chromosomal loci that are transcriptionally active during growth arrest of NIH 3T3 fibroblasts, we found that an mRNA expressed preferentially in serum-deprived cells specifies the previously characterized alpha-receptor (alphaR) for platelet-derived growth factor (PDGF), which mediates mitogenic responsiveness to all PDGF isoforms. Both PDGFalphaR mRNA, which was shown to include a 111-nt segment encoded by a DNA region thought to contain only intron sequences, and PDGFalphaR protein accumulated in serum-starved cells and decreased as cells resumed cycling. Elevated PDGFalphaR gene expression during serum starvation was not observed in cells that had been transformed with oncogenes erbB2, src, or raf, which prevent starvation-induced growth arrest. Our results support the view that products of certain genes expressed during growth arrest function to promote, rather than restrict, cell cycling. We suggest that accumulation of the PDGFalphaR gene product may facilitate the exiting of cells from growth arrest upon mitogenic stimulation by PDGF, leading to the state of "competence" required for cell cycling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Like other adipocyte genes that are transcriptionally activated by CCAAT/enhancer binding protein alpha (C/EBP alpha) during preadipocyte differentiation, expression of the mouse obese (ob) gene is immediately preceded by the expression of C/EBP alpha. While the 5' flanking region of the mouse ob gene contains several consensus C/EBP binding sites, only one of these sites appears to be functional. DNase I cleavage inhibition patterns (footprinting) of the ob gene promoter revealed that recombinant C/EBP alpha, as well as a nuclear factor present in fully differentiated 3T3-L1 adipocytes, but present at a much lower level in preadipocytes, protects the same region between nucleotides -58 and -42 relative to the transcriptional start site. Electrophoretic mobility-shift analysis using nuclear extracts from adipose tissue or 3T3-L1 adipocytes and an oligonucleotide probe corresponding to a consensus C/EBP binding site at nucleotides -55 to -47 generated a specific protein-oligonucleotide complex that was supershifted by antibody against C/EBP alpha. Probes corresponding to two upstream consensus C/EBP binding sites failed to generate protein-oligonucleotide complexes. Cotransfection of a C/EBP alpha expression vector into 3T3-L1 cells with a series of 5' truncated ob gene promoter constructs activated reporter gene expression with all constructs containing the proximal C/EBP binding site (nucleotides -55 to -47). Mutation of this site blocked transactivation by C/EBP alpha. Taken together, these findings implicate C/EBP alpha as a transcriptional activator of the ob gene promoter and identify the functional C/EBP binding site in the promoter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To examine the in vivo role(s) of type I interferons (IFNs) and to determine the role of a component of the type I IFN receptor (IFNAR1) in mediating responses to these IFNs, we generated mice with a null mutation (-/-) in the IFNAR1 gene. Despite compelling evidence for modulation of cell proliferation and differentiation by type I IFNs, there were no gross signs of abnormal fetal development or morphological changes in adult IFNAR1-/- mice. However, abnormalities of hemopoietic cells were detected in IFNAR1 -/- mice. Elevated levels of myeloid lineage cells were detected in peripheral blood and bone marrow by staining with Mac-1 and Gr-1 antibodies. Furthermore, bone marrow macrophages from IFNAR1 -/- mice showed abnormal responses to colony-stimulating factor 1 and lipopolysaccharide. IFNAR1 -/- mice were highly susceptible to viral infection: viral titers were undetected 24 hr after infection of IFNAR1 +/+ mice but were extremely high in organs of IFNAR1 -/- mice, demonstrating that the type I IFN system is a major acute antiviral defence. In cell lines derived from IFNAR1 -/- mice, there was no signaling in response to IFN-alpha or -beta as measured by induction of 2'-5' oligoadenylate synthetase, antiviral, or antiproliferative responses. Importantly, these studies demonstrate that type I IFNs function in the development and responses of myeloid lineage cells, particularly macrophages, and that the IFNAR1 receptor component is essential for antiproliferative and antiviral responses to IFN-alpha and -beta.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutations in the genes encoding two proteins of the retinal rod phototransduction cascade, opsin and the beta subunit of rod cGMP phosphodiesterase, cause retinitis pigmentosa (RP) in some families. Here we report defects in a third member of this biochemical pathway in still other patients with this disease. We screened 94 unrelated patients with autosomal dominant RP and 173 unrelated patients with autosomal recessive RP for mutations in the gene encoding the alpha subunit of the rod cGMP-gated cation channel. Five mutant sequences cosegregated with disease among four unrelated families with autosomal recessive RP. Two of these were nonsense mutations early in the reading frame (Glu76End and Lys139End) and one was a deletion encompassing most if not all of the transcriptional unit; these three alleles would not be expected to encode a functional channel. The remaining two mutations were a missense mutation (Ser316Phe) and a frameshift [Arg654(1-bp del)] mutation truncating the last 32 aa in the C terminus. The latter two mutations were expressed in vitro and found to encode proteins that were predominantly retained inside the cell instead of being targeted to the plasma membrane. We conclude that the absence or paucity of functional cGMP-gated cation channels in the plasma membrane is deleterious to rod photoreceptors and is an uncommon cause of RP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The enzyme collagenase (EC 3.4.24.7), a key mediator in biological remodeling, can be induced in early-passage fibroblasts by a wide variety of agents and conditions. In contrast, at least some primary tissue fibroblasts are incompetent to synthesize collagenase in response to many of these stimulators. In this study, we investigate mechanisms controlling response to two of the conditions in question: (i) trypsin or cytochalasin B, which disrupt actin stress fibers, or (ii) phorbol 12-myristate 13-acetate (PMA), which activates growth factor signaling pathways. We demonstrate that collagenase expression stimulated by trypsin or cytochalasin B is regulated entirely through an autocrine cytokine, interleukin 1 alpha (IL-1 alpha). The IL-1 alpha intermediate also constitutes the major mechanism by which PMA stimulates collagenase expression, although a second signaling pathway(s) contributes to a minor extent. Elevation of the IL-1 alpha level in response to stimulators is found to be sustained by means of an autocrine feedback loop in early-passage fibroblast cultures. In contrast, fibroblasts freshly isolated from the tissue are incompetent to activate and sustain the IL-1 alpha feedback loop, even though they synthesize collagenase in response to exogenous IL-1. We conclude that this is the reason why tissue fibroblasts are limited, in comparison with subcultured fibroblasts, in their capacity to synthesize collagenase. Activation of the IL-1 alpha feedback loop, therefore, seems likely to be an important mechanism by which resident tissue cells adopt the remodeling phenotype.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The alpha-crystallin-related heat shock proteins are produced by all eukaryotes, but the role of these proteins in thermoprotection remains unclear. To investigate the function of one of these proteins, we disrupted expression of the single-copy hsp30 gene of Neurospora crassa, using repeat-induced point mutagenesis, and we generated and characterized mutant strains that were deficient in hsp30 synthesis. These strains could grow at high temperature and they acquired thermotolerance from a heat shock. However, the hsp30-defective strains proved to be extremely sensitive to the combined stresses of high temperature and carbohydrate limitation, enforced by the addition of a nonmetabolizable glucose analogue. Under these conditions, their survival was reduced by 90% compared with wild-type cells. This sensitive phenotype was reversed by reintroduction of a functional hsp30 gene into the mutant strains. The mutant cells contained mitochondria from which a 22-kDa protein was readily extracted with detergents, in contrast to its retention by the mitochondria of wild-type cells. Antibodies against hsp30 coimmunoprecipitated a protein also of approximately 22 kDa from wild-type cells. Results of this study suggest that hsp30 may be important for efficient carbohydrate utilization during high temperature stress and that it may interact with other mitochondrial membrane proteins and function as a protein chaperone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) is involved in trafficking of lymphocytes to mucosal endothelium. Expression of MAdCAM-1 is induced in the murine endothelial cell line bEnd.3 by tumor necrosis factor alpha (TNF-alpha), interleukin 1, and bacterial lipopolysaccharide. Here we show that TNF-alpha enhances expression of a firefly luciferase reporter directed by the MAdCAM-1 promoter, confirming transcriptional regulation of MAdCAM-1. Mutational analysis of the promoter indicates that a DNA fragment extending from nt -132 to nt +6 of the gene is sufficient for TNF-alpha inducibility. Two regulatory sites critical for TNF-alpha induction were identified in this region. DNA-binding experiments demonstrate that NF-kappa B proteins from nuclear extracts of TNF-alpha-stimulated bEnd.3 cells bind to these sites, and transfection assays with promoter mutants of the MAdCAM-1 gene indicate that occupancy of both sites is essential for promoter function. The predominant NF-kappa B binding activity detected with these nuclear extracts is a p65 homodimer. These findings establish that, as with other endothelial cell adhesion molecules, transcriptional induction of MAdCAM-1 by TNF-alpha requires activated NF-kappa B proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With only two different cell types, the haploid green alga Volvox represents the simplest multicellular model system. To facilitate genetic investigations in this organism, the occurrence of homologous recombination events was investigated with the intent of developing methods for gene replacement and gene disruption. First, homologous recombination between two plasmids was demonstrated by using overlapping nonfunctional fragments of a recombinant arylsulfatase gene (tubulin promoter/arylsulfatase gene). After bombardment of Volvox reproductive cells with DNA-coated gold microprojectiles, transformants expressing arylsulfatase constitutively were recovered, indicating the presence of the machinery for homologous recombination in Volvox. Second, a well characterized loss-of-function mutation in the nuclear nitrate reductase gene (nitA) with a single G → A nucleotide exchange in a 5′-splice site was chosen as a target for gene replacement. Gene replacement by homologous recombination was observed with a reasonably high frequency only if the replacement vector containing parts of the functional nitrate reductase gene contained only a few nucleotide exchanges. The ratio of homologous to random integration events ranged between 1:10 and 1:50, i.e., homologous recombination occurs frequently enough in Volvox to apply the powerful tool of gene disruption for functional studies of novel genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small molecules that bind their biological receptors with high affinity and selectivity can be isolated from randomized pools of combinatorial libraries. RNA-protein interactions are important in many cellular functions, including transcription, RNA splicing, and translation. One example of such interactions is the mechanism of trans-activation of HIV-1 gene expression that requires the interaction of Tat protein with the trans-activation responsive region (TAR) RNA, a 59-base stem-loop structure located at the 5′ end of all nascent HIV-1 transcripts. Here we demonstrate the isolation of small TAR RNA-binding molecules from an encoded combinatorial library. We have made an encoded combinatorial tripeptide library of 24,389 possible members from d-and l-alpha amino acids on TentaGel resin. Using on-bead screening we have identified a small family of mostly heterochiral tripeptides capable of structure-specific binding to the bulge loop of TAR RNA. In vitro binding studies reveal stereospecific discrimination when the best tripeptide ligand is compared with diastereomeric peptide sequences. In addition, the most strongly binding tripeptide was shown to suppress transcriptional activation by Tat protein in human cells with an IC50 of ≈50 nM. Our results indicate that tripeptide RNA ligands are cell permeable, nontoxic to cells, and capable of inhibiting expression of specific genes by interfering with RNA-protein interactions.