21 resultados para activities of dean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel mechanism of reciprocal behavioral agonist-antagonist activities of enantiomeric pheromones plays a pivotal role in overcoming the signal-to-noise problem derived from the use of a single-constituent pheromone system in scarab beetles. Female Anomala osakana produce (S, Z)-5-(+)-(1-decenyl)oxacyclopentan-2-one, which is highly attractive to males; the response is completely inhibited even by 5% of its antipode. These two enantiomers have reverse roles in the Popillia japonica sex pheromone system. Chiral GC-electroantennographic detector experiments suggest that A. osakana and P. japonica have both R and S receptors that are responsible for behavioral agonist and antagonist responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Promyelocytic leukemia zinc finger-retinoic acid receptor a (PLZF-RARalpha), a fusion receptor generated as a result of a variant t(11;17) chromosomal translocation that occurs in a small subset of acute promyelocytic leukemia (APL) patients, has been shown to display a dominant-negative effect against the wild-type RARalpha/retinoid X receptor alpha (RXRalpha). We now show that its N-terminal region (called the POZ-domain), which mediates protein-protein interaction as well as specific nuclear localization of the wild-type PLZF and chimeric PLZF-RARalpha proteins, is primarily responsible for this activity. To further investigate the mechanisms of PLZF-RARalpha action, we have also studied its ligand-receptor, protein-protein, and protein-DNA interaction properties and compared them with those of the promyelocytic leukemia gene (PML)-RARalpha, which is expressed in the majority of APLs as a result of t(15;17) translocation. PLZF-RARalpha and PML-RARalpha have essentially the same ligand-binding affinities and can bind in vitro to retinoic acid response elements (RAREs) as homodimers or heterodimers with RXRalpha. PLZF-RARalpha homodimerization and heterodimerization with RXRalpha were primarily mediated by the POZ-domain and RARalpha sequence, respectively. Despite having identical RARalpha sequences, PLZF-RARalpha and PML-RARalpha homodimers recognized with different affinities distinct RAREs. Furthermore, PLZF-RARalpha could heterodimerize in vitro with the wild-type PLZF, suggesting that it may play a role in leukemogenesis by antagonizing actions of not only the retinoid receptors but also the wild-type PLZF and possibly other POZ-domain-containing regulators. These different protein-protein interactions and the target gene specificities of PLZF-RARalpha and PML-RARalpha may underlie, at least in part, the apparent resistance of APL with t(11;17) to differentiation effects of all-trans-retinoic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strains of Mycobacterium smegmatis, a mycobacterium which shares genetic sequences, grows more rapidly, and is nonpathogenic in man as compared with Mycobacterium tuberculosis, were utilized for the initial development of new antimycobacterial therapy. Drug-resistant strains of M. smegmatis which are known to arise in a manner identical to the emergence of drug-resistant strains of M. tuberculosis were isolated and utilized as models for the antimycobacterial activities of modified and unmodified oligodeoxynucleotide phosphorothioates in broth cultures. Under normal conditions, oligodeoxynucleotide phosphorothioates do not enter mycobacteria, and several strategies were successfully utilized to afford entry of oligonucleotides into the mycobacterial cells. One involved the presence of very low levels of ethambutol, which enables the entry of oligonucleotides into mycobacteria because of its induced alterations in the cell wall, and another involved the utilization of oligonucleotides covalently attached to a D-cycloserine molecule, whereby entry into the mycobacterial cell is achieved by a receptor-mediated process. Another low molecular weight, covalently attached ligand that enabled the entry and subsequent antimycobacterial activities of oligodeoxynucleotide phosphorothioates in the absence of a cell wall modifying reagent was biotin. Significant sequence-specific growth inhibition of wild-type, as well as of drug-resistant, M. smegmatis was obtained by modified oligonucleotides complementary in sequence to a specific region of the mycobacterium aspartokinase (ask) gene when utilized in combinations with ethambutol (as compared to ethambutol alone) or as D-cycloserine or biotin covalent adducts without the presence of any other cytotoxic or cytostatic agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A potent, orally active growth hormone (GH) secretagogue L-163,191 belonging to a recently synthesized structural class has been characterized. L-163,191 releases GH from rat pituitary cells in culture with EC50 = 1.3 +/- 0.09 nM and is mechanistically indistinguishable from the GH-releasing peptide GHRP-6 and the prototypical nonpeptide GH secretagogue L-692,429 but clearly distinguishable from the natural GH secretagogue, GH-releasing hormone. L-163,191 elevates GH in dogs after oral doses as low as 0.125 mg/kg and was shown to be specific in its release of GH without significant effect on plasma levels of aldosterone, luteinizing hormone, thyroxine, and prolactin after oral administration of 1 mg/kg. Only modest increases in cortisol were observed. Based on these properties, L-163,191 has been selected for clinical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thrombin is an allosteric enzyme existing in two forms, slow and fast, that differ widely in their specificities toward synthetic and natural amide substrates. The two forms are significantly populated in vivo, and the allosteric equilibrium can be affected by the binding of effectors and natural substrates. The fast form is procoagulant because it cleaves fibrinogen with higher specificity; the slow form is anticoagulant because it cleaves protein C with higher specificity. Binding of thrombomodulin inhibits cleavage of fibrinogen by the fast form and promotes cleavage of protein C by the slow form. The allosteric properties of thrombin, which has targeted two distinct conformational states toward its two fundamental and competing roles in hemostasis, are paradigmatic of a molecular strategy that is likely to be exploited by other proteases in the blood coagulation cascade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At least two kidney epithelial cell lines, the Madin-Darby canine kidney (MDCK) and the murine inner medullary collecting duct line mIMCD-3, can be induced to form branching tubular structures when cultured with hepatocyte growth factor (HGF) plus serum in collagen I gels. In our studies, whereas MDCK cells remained unable to form tubules in the presence of serum alone, mIMCD-3 cells formed impressive branching tubular structures with apparent lumens, suggesting the existence of specific factors in serum that are tubulogenic for mIMCD-3 cells but not for MDCK cells. Since normal serum does not contain enough HGF to induce tubulogenesis, these factors appeared to be substances other than HGF. This was also suggested by another observation: when MDCK cells or mIMCD-3 cells were cocultured under serum-free conditions with the embryonic kidney, both cell types formed branching tubular structures similar to those induced by HGF; however, only in the case of MDCK cells could this be inhibited by neutralizing antibodies against HGF. Thus, the embryonic kidney produces growth factors other than HGF capable of inducing tubule formation in the mIMCD-3 cells. Of a number of growth factors examined, transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) were found to be tubulogenic for mIMCD-3 cells. Whereas only HGF was a potent tubulogenic factor for MDCK cells, HGF, TGF-alpha, and EGF were potent tubulogenic factors for mIMCD-3 cells. Nevertheless, there were marked differences in the capacity of these tubulogenic factors to induce tubulation as well as branching events in those tubules that did form (HGF >> TGF-alpha > EGF). Thus, at least three different growth factors can induce tubulogenesis and branching in a specific epithelial cell in vitro (though to different degrees), and different epithelial cells that are capable of forming branching tubular structures demonstrate vastly different responses to tubulogenic growth factors. The results are discussed in the context of branching morphogenesis during epithelial tissue development.