41 resultados para acellular scaffold


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elastic fibers consist of two morphologically distinct components: elastin and 10-nm fibrillin-containing microfibrils. During development, the microfibrils form bundles that appear to act as a scaffold for the deposition, orientation, and assembly of tropoelastin monomers into an insoluble elastic fiber. Although microfibrils can assemble independent of elastin, tropoelastin monomers do not assemble without the presence of microfibrils. In the present study, immortalized ciliary body pigmented epithelial (PE) cells were investigated for their potential to serve as a cell culture model for elastic fiber assembly. Northern analysis showed that the PE cells express microfibril proteins but do not express tropoelastin. Immunofluorescence staining and electron microscopy confirmed that the microfibril proteins produced by the PE cells assemble into intact microfibrils. When the PE cells were transfected with a mammalian expression vector containing a bovine tropoelastin cDNA, the cells were found to express and secrete tropoelastin. Immunofluorescence and electron microscopic examination of the transfected PE cells showed the presence of elastic fibers in the matrix. Biochemical analysis of this matrix showed the presence of cross-links that are unique to mature insoluble elastin. Together, these results indicate that the PE cells provide a unique, stable in vitro system in which to study elastic fiber assembly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternative pre-mRNA splicing patterns can change an extracellular stimulus, but the signaling pathways leading to these changes are still poorly characterized. Here, we describe a tyrosine-phosphorylated nuclear protein, YT521-B, and show that it interacts with the nuclear transcriptosomal component scaffold attachment factor B, and the 68-kDa Src substrate associated during mitosis, Sam68. Northern blot analysis demonstrated ubiquitous expression, but detailed RNA in situ analysis revealed cell type specificity in the brain. YT521-B protein is localized in the nucleoplasm and concentrated in 5–20 large nuclear dots. Deletion analysis demonstrated that the formation of these dots depends on the presence of the amino-terminal glutamic acid-rich domain and the carboxyl-terminal glutamic acid/arginine-rich region. We show that the latter comprises an important protein–protein interaction domain. The Src family kinase p59fyn-mediated tyrosine phosphorylation of Sam68 negatively regulates its association with YT521-B, and overexpression of p59fyn dissolves nuclear dots containing YT521-B. In vivo splicing assays demonstrated that YT521-B modulates alternative splice site selection in a concentration-dependent manner. Together, our data indicate that YT521-B and Sam68 may be part of a signal transduction pathway that influences splice site selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the hypodermis of a rhabditid nematode such as Caenorhabditis elegans is a single syncytium. The size of this syncytium (as measured by body size) has evolved repeatedly in the rhabditid nematodes. Two cellular mechanisms are important in the evolution of body size: changes in the numbers of cells that fuse with the syncytium, and the extent of its acellular growth. Thus nematodes differ from mammals and other invertebrates in which body size evolution is caused by changes in cell number alone. The evolution of acellular syncytial growth in nematodes is also associated with changes in the ploidy of hypodermal nuclei. These nuclei are polyploid as a consequence of iterative rounds of endoreduplication, and this endocycle has evolved repeatedly. The association between acellular growth and endoreduplication is also seen in C. elegans mutations that interrupt transforming growth factor-β signaling and that result in dwarfism and deficiencies in hypodermal ploidy. The transforming growth factor-β pathway is a candidate for being involved in nematode body size evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate that the ligand pocket of a lipocalin from Pieris brassicae, the bilin-binding protein (BBP), can be reshaped by combinatorial protein design such that it recognizes fluorescein, an established immunological hapten. For this purpose 16 residues at the center of the binding site, which is formed by four loops on top of an eight-stranded β-barrel, were subjected to random mutagenesis. Fluorescein-binding BBP variants were then selected from the mutant library by bacterial phage display. Three variants were identified that complex fluorescein with high affinity, exhibiting dissociation constants as low as 35.2 nM. Notably, one of these variants effects almost complete quenching of the ligand fluorescence, similarly as an anti-fluorescein antibody. Detailed ligand-binding studies and site-directed mutagenesis experiments indicated (i) that the molecular recognition of fluorescein is specific and (ii) that charged residues at the center of the pocket are responsible for tight complex formation. Sequence comparison of the BBP variants directed against fluorescein with the wild-type protein and with further variants that were selected against several other ligands revealed that all of the randomized amino acid positions are variable. Hence, a lipocalin can be used for generating molecular pockets with a diversity of shapes. We term this class of engineered proteins “anticalins.” Their one-domain scaffold makes them a promising alternative to antibodies to create a stable receptor protein for a ligand of choice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Limited solubility and precipitation of amyloidogenic sequences such as the Alzheimer peptide (β-AP) are major obstacles to a molecular understanding of protein fibrillation and deposition processes. Here we have circumvented the solubility problem by stepwise engineering a β-AP homology into a soluble scaffold, the monomeric protein S6. The S6 construct with the highest β-AP homology crystallizes as a tetramer that is linked by the β-AP residues forming intermolecular antiparallel β-sheets. This construct also shows increased coil aggregation during refolding, and a 14-mer peptide encompassing the engineered sequence forms fibrils. Mutational analysis shows that intermolecular association is linked to the overall hydrophobicity of the sticky sequence and implies the existence of “structural gatekeepers” in the wild-type protein, that is, charged side chains that prevent aggregation by interrupting contiguous stretches of hydrophobic residues in the primary sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzymes participating in different metabolic pathways often have similar catalytic mechanisms and structures, suggesting their evolution from a common ancestral precursor enzyme. We sought to create a precursor-like enzyme for N′-[(5′-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) isomerase (HisA; EC 5.3.1.16) and phosphoribosylanthranilate (PRA) isomerase (TrpF; EC 5.3.1.24), which catalyze similar reactions in the biosynthesis of the amino acids histidine and tryptophan and have a similar (βα)8-barrel structure. Using random mutagenesis and selection, we generated several HisA variants that catalyze the TrpF reaction both in vivo and in vitro, and one of these variants retained significant HisA activity. A more detailed analysis revealed that a single amino acid exchange could establish TrpF activity on the HisA scaffold. These findings suggest that HisA and TrpF may have evolved from an ancestral enzyme of broader substrate specificity and underscore that (βα)8-barrel enzymes are very suitable for the design of new catalytic activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic and biochemical studies have led to the identification of the Stat3-Interacting Protein StIP1. The preferential association of StIP1 with inactive (i.e., unphosphorylated) Stat3 suggests that it may contribute to the regulation of Stat3 activation. Consistent with this possibility, StIP1 also exhibits an affinity for members of the Janus kinase family. Overexpression of the Stat3-binding domain of StIP1 blocks Stat3 activation, nuclear translocation, and Stat3-dependent induction of a reporter gene. These studies indicate that StIP1 regulates the ligand-dependent activation of Stat3, potentially by serving as a scaffold protein that promotes the interaction between Janus kinases and their Stat3 substrate. The ability of StIP1 to associate with several additional members of the signal transducer and activator of transcription family suggests that StIP1 may serve a broader role in cytokine-signaling events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muconate lactonizing enzyme (MLE), a component of the β-ketoadipate pathway of Pseudomonas putida, is a member of a family of related enzymes (the “enolase superfamily”) that catalyze the abstraction of the α-proton of a carboxylic acid in the context of different overall reactions. New untwinned crystal forms of MLE were obtained, one of which diffracts to better than 2.0-Å resolution. The packing of the octameric enzyme in this crystal form is unusual, because the asymmetric unit contains three subunits. The structure of MLE presented here contains no bound metal ion, but is very similar to a recently determined Mn2+-bound structure. Thus, absence of the metal ion does not perturb the structure of the active site. The structures of enolase, mandelate racemase, and MLE were superimposed. A comparison of metal ligands suggests that enolase may retain some characteristics of the ancestor of this enzyme family. Comparison of other residues involved in catalysis indicates two unusual patterns of conservation: (i) that the position of catalytic atoms remains constant, although the residues that contain them are located at different points in the protein fold; and (ii) that the positions of catalytic residues in the protein scaffold are conserved, whereas their identities and roles in catalysis vary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stroke and head trauma are worldwide public health problems and leading causes of death and disability in humans, yet, no adequate neuroprotective treatment is available for therapy. Glutamate antagonists are considered major drug candidates for neuroprotection in stroke and trauma. However, N-methyl-d-aspartate antagonists failed clinical trials because of unacceptable side effects and short therapeutic time window. α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) antagonists derived from the quinoxalinedione scaffold cannot be used in humans because of their insolubility and resulting renal toxicity. Therefore, achieving water solubility of quinoxalinediones without loss of selectivity and potency profiles becomes a major challenge for medicinal chemistry. One of the major tenets in the chemistry of glutamate antagonists is that the incorporation of phosphonate into the glutamate framework results in preferential N-methyl-d-aspartate antagonism. Therefore, synthesis of phosphonate derivatives of quinoxalinediones was not pursued because of a predicted loss of their selectivity toward AMPA. Here, we report that introduction of a methylphosphonate group into the quinoxalinedione skeleton leaves potency as AMPA antagonists and selectivity for the AMPA receptor unchanged and dramatically improves solubility. One such novel phosphonate quinoxalinedione derivative and competitive AMPA antagonist ZK200775 exhibited a surprisingly long therapeutic time window of >4 h after permanent occlusion of the middle cerebral artery in rats and was devoid of renal toxicity. Furthermore, delayed treatment with ZK200775 commencing 2 h after onset of reperfusion in transient middle cerebral artery occlusion resulted in a dramatic reduction of the infarct size. ZK200775 alleviated also both cortical and hippocampal damage induced by head trauma in the rat. These observations suggest that phosphonate quinoxalinedione-based AMPA antagonists may offer new prospects for treatment of stroke and trauma in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human cytomegalovirus UL97 kinase, an important target of antiviral therapy, has an impact on at least two distinct phases of viral replication. Compared with wild-type virus, the UL97 deletion mutant exhibits an early replication defect that reduces DNA accumulation by 4- to 6-fold, as well as a late capsid maturation defect responsible for most of the observed 100- to 1000-fold reduction in replication. Block-release experiments with the antiviral 2-bromo-5,6-dichloro-1-(β-d-ribofuranosyl)-benzimidazole revealed an important role for UL97 kinase in capsid assembly. Although cleavage of concatemeric DNA intermediates to unit-length genomes remained unaffected, progeny mutant virus maturation was delayed, with accumulation of progeny at significantly reduced levels compared with wild type after release of this block. Transmission electron microscopy confirmed the aberrant accumulation of empty A-like capsids containing neither viral DNA nor an internal scaffold structure, consistent with a failure to stably package DNA in mutant virus-infected cells. The function of UL97 in DNA synthesis as well as capsid assembly suggests that protein phosphorylation mediated by this herpesvirus-conserved kinase increases the efficiency of these two distinct phases of virus replication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The TRANSFAC database on transcription factors and their DNA-binding sites and profiles (http://www.gene-regulation.de/) has been quantitatively extended and supplemented by a number of modules. These modules give information about pathologically relevant mutations in regulatory regions and transcription factor genes (PathoDB), scaffold/matrix attached regions (S/MARt DB), signal transduction (TRANSPATH) and gene expression sources (CYTOMER). Altogether, these distinct database modules constitute the TRANSFAC system. They are accompanied by a number of program routines for identifying potential transcription factor binding sites or for localizing individual components in the regulatory network of a cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Techniques of tissue engineering and cell and molecular biology were used to create a biodegradable scaffold for transfected cells to produce complex proteins. Mullerian Inhibiting Substance (MIS) causes regression of Mullerian ducts in the mammalian embryo. MIS also causes regression in vitro of ovarian tumor cell lines and primary cells from ovarian carcinomas, which derive from Mullerian structures. In a strategy to circumvent the complicated purification protocols for MIS, Chinese hamster ovary cells transfected with the human MIS gene were seeded onto biodegradable polymers of polyglycolic acid fibers and secretion of MIS confirmed. The polymer-cell graft was implanted into the right ovarian pedicle of severe combined immunodeficient mice. Serum MIS in the mice rose to supraphysiologic levels over time. One week after implantation of the polymer-cell graft, IGROV-1 human tumors were implanted under the renal capsule of the left kidney. Growth of the IGROV-1 tumors was significantly inhibited in the animals with a polymer-cell graft of MIS-producing cells, compared with controls. This novel MIS delivery system could have broader applications for other inhibitory agents not amenable to efficient purification and provides in vivo evidence for a role of MIS in the treatment of ovarian cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Select lipid-anchored proteins such as glycosylphosphatidylinositol (GPI)-anchored proteins and nonreceptor tyrosine kinases may preferentially partition into sphingomyelin-rich and cholesterol-rich plasmalemmal microdomains, thereby acquiring resistance to detergent extraction. Two such domains, caveolae and lipid rafts, are morphologically and biochemically distinct, contain many signaling molecules, and may function in compartmentalizing cell surface signaling. Subfractionation and confocal immunofluorescence microscopy reveal that, in lung tissue and in cultured endothelial and epithelial cells, heterotrimeric G proteins (Gi, Gq, Gs, and Gβγ) target discrete cell surface microdomains. Gq specifically concentrates in caveolae, whereas Gi and Gs concentrate much more in lipid rafts marked by GPI-anchored proteins (5′ nucleotidase and folate receptor). Gq, apparently without Gβγ subunits, stably associates with plasmalemmal and cytosolic caveolin. Gi and Gs interact with Gβγ subunits but not caveolin. Gi and Gs, unlike Gq, readily move out of caveolae. Thus, caveolin may function as a scaffold to trap, concentrate, and stabilize Gq preferentially within caveolae over lipid rafts. In N2a cells lacking caveolae and caveolin, Gq, Gi, and Gs all concentrate in lipid rafts as a complex with Gβγ. Without effective physiological interaction with caveolin, G proteins tend by default to segregate in lipid rafts. The ramifications of the segregated microdomain distribution and the Gq-caveolin complex without Gβγ for trafficking, signaling, and mechanotransduction are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzymes of the de novo purine biosynthetic pathway may form a multienzyme complex to facilitate substrate flux through the ten serial steps constituting the pathway. One likely strategy for complex formation is the use of a structural scaffold such as the cytoskeletal network or subcellular membrane of the cell to mediate protein–protein interactions. To ascertain whether this strategy pertains to the de novo purine enzymes, the localization pattern of the third purine enzyme, glycinamide ribonucleotide transformylase (GAR Tfase) was monitored in live Escherichia coli and mammalian cells. Genes encoding human as well as E. coli GAR Tfase fused with green fluorescent protein (GFP) were introduced into their respective cells with regulated expression of proteins and localization patterns monitored by using confocal fluorescence microscopy. In both instances images showed proteins to be diffused throughout the cytoplasm. Thus, GAR Tfase is not localized to an existing cellular architecture, so this device is probably not used to concentrate the members of the pathway. However, discrete clusters of the pathway may still exist throughout the cytoplasm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A specific set of molecules including glutamate receptors is targeted to the postsynaptic specialization of excitatory synapses in the brain, gathering in a structure known as the postsynaptic density (PSD). Synaptic targeting of glutamate receptors depends on interactions between the C-terminal tails of receptor subunits and specific PDZ domain-containing scaffold proteins in the PSD. These scaffold proteins assemble a specialized protein complex around each class of glutamate receptor that functions in signal transduction, cytoskeletal anchoring, and trafficking of the receptors. Among the glutamate receptor subtypes, the N-methyl-d-aspartate receptor is relatively stably integrated in the PSD, whereas the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor moves in and out of the postsynaptic membrane in highly dynamic fashion. The distinctive cell biological behaviors of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors can be explained by their differential interactions with cytoplasmic proteins.