41 resultados para Y-chromosome Diversity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The X and Y chromosomes of the mouse, like those of other mammals, are heteromorphic over most of their length, but at the distal ends of the chromosomes is a region of sequence identity, the pseudoautosomal region (PAR), where the chromosomes pair and recombine during male meiosis. The point at which the PAR diverges into X- and Y-specific sequences is called the pseudoautosomal boundary. We have completed a genomic walk from the X-specific Amelogenin gene to the PAR. Analysis of this region revealed that the pseudoautosomal boundary of mice is located within an intron of a transcribed gene that encodes a novel RING finger protein. The first three of the exons of the gene are located on the X chromosome whereas the 3′ exons of the gene are located on both X and Y chromosomes. This unusual arrangement may indicate that the gene is in a state of transition from pseudoautosomal to X-unique and provides evidence for a process of attrition of the pseudoautosomal region on the Y chromosome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human history is punctuated by periods of rapid cultural change. Although archeologists have developed a range of models to describe cultural transitions, in most real examples we do not know whether the processes involved the movement of people or the movement of culture only. With a series of relatively well defined cultural transitions, the British Isles present an ideal opportunity to assess the demographic context of cultural change. Important transitions after the first Paleolithic settlements include the Neolithic, the development of Iron Age cultures, and various historical invasions from continental Europe. Here we show that patterns of Y-chromosome variation indicate that the Neolithic and Iron Age transitions in the British Isles occurred without large-scale male movements. The more recent invasions from Scandinavia, on the other hand, appear to have left a significant paternal genetic legacy. In contrast, patterns of mtDNA and X-chromosome variation indicate that one or more of these pre-Anglo-Saxon cultural revolutions had a major effect on the maternal genetic heritage of the British Isles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is a common chronic human genetic disorder whose hallmark is systemic iron overload. Homozygosity for a mutation in the MHC class I heavy chain paralogue gene HFE has been found to be a primary cause of HH. However, many individuals homozygous for the defective allele of HFE do not develop iron overload, raising the possibility that genetic variation in modifier loci contributes to the HH phenotype. Mice deficient in the product of the β2-microglobulin (β2M) class I light chain fail to express HFE and other MHC class I family proteins, and they have been found to manifest many characteristics of the HH phenotype. To determine whether natural genetic variation plays a role in controlling iron overload, we performed classical genetic analysis of the iron-loading phenotype in β2M-deficient mice in the context of different genetic backgrounds. Strain background was found to be a major determinant in iron loading. Sex played a role that was less than that of strain background but still significant. Resistance and susceptibility to iron overload segregated as complex genetic traits in F1 and back-cross progeny. These results suggest the existence of naturally variant autosomal and Y chromosome-linked modifier loci that, in the context of mice genetically predisposed by virtue of a β2M deficiency, can profoundly influence the severity of iron loading. These results thus provide a genetic explanation for some of the variability of the HH phenotype.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Deleted in AZoospermia (DAZ) genes encode potential RNA-binding proteins that are expressed exclusively in prenatal and postnatal germ cells and are strong candidates for human fertility factors. Here we report the identification of an additional member of the DAZ gene family, which we have called BOULE. With the identification of this gene, it is clear that the human DAZ gene family contains at least three members: DAZ, a Y-chromosome gene cluster that arose 30–40 million years ago and whose deletion is linked to infertility in men; DAZL, the “father” of DAZ, a gene that maps to human chromosome 3 and has homologs required for both female and male germ cell development in other organisms; and BOULE, a gene that we propose is the “grandfather” of DAZ and maps to human chromosome 2. Human and mouse BOULE resemble the invertebrate meiotic regulator Boule, the proposed ortholog of DAZ, in sequence and expression pattern and hence likely perform a similar meiotic function. In contrast, the previously identified human DAZ and DAZL are expressed much earlier than BOULE in prenatal germ stem cells and spermatogonia; DAZL also is expressed in female germ cells. These data suggest that homologs of the DAZ gene family can be grouped into two subfamilies (BOULE and DAZL) and that members of the DAZ family evolved from an ancestral meiotic regulator, Boule, to assume distinct, yet overlapping, functions in germ cell development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An analysis of Y-chromosomal haplotypes in several European populations reveals an almost monomorphic pattern in the Finns, whereas Y-chromosomal diversity is significantly higher in other populations. Furthermore, analyses of nucleotide positions in the mitochondrial control region that evolve slowly show a decrease in genetic diversity in Finns. Thus, relatively few men and women have contributed the genetic lineages that today survive in the Finnish population. This is likely to have caused the so-called "Finnish disease heritage"-i.e., the occurrence of several genetic diseases in the Finnish population that are rare elsewhere. A preliminary analysis of the mitochondrial mutations that have accumulated subsequent to the bottleneck suggests that it occurred about 4000 years ago, presumably when populations using agriculture and animal husbandry arrived in Finland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Male infertility, affecting as many as 10% of the adult population, is an extremely prevalent disorder. In most cases, the cause of the condition is unknown, and genetic factors that might affect male fertility, other than some sequences on the Y chromosome, have not been identified. We report here that male mice heterozygous for a targeted mutation of the apolipoprotein B (apo B) gene exhibit severely compromised fertility. Sperm from these mice failed to fertilize eggs both in vivo and in vitro. However, these sperm were able to fertilize eggs once the zona pellucida was removed but displayed persistent abnormal binding to the egg after fertilization. In vitro fertilization-related and other experiments revealed reduced sperm motility, survival time, and sperm count also contributed to the infertility phenotype. Recognition of the infertility phenotype led to the identification of apo B mRNA in the testes and epididymides of normal mice, and these transcripts were substantially reduced in the affected animals. Moreover, when the genomic sequence encoding human apo B was introduced into these animals, normal fertility was restored. These findings suggest that this genetic locus may have an important impact on male fertility and identify a previously unrecognized function for apo B.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new and highly effective method, termed suppression subtractive hybridization (SSH), has been developed for the generation of subtracted cDNA libraries. It is based primarily on a recently described technique called suppression PCR and combines normalization and subtraction in a single procedure. The normalization step equalizes the abundance of cDNAs within the target population and the subtraction step excludes the common sequences between the target and driver populations. In a model system, the SSH technique enriched for rare sequences over 1,000-fold in one round of subtractive hybridization. We demonstrate its usefulness by generating a testis-specific cDNA library and by using the subtracted cDNA mixture as a hybridization probe to identify homologous sequences in a human Y chromosome cosmid library. The human DNA inserts in the isolated cosmids were further confirmed to be expressed in a testis-specific manner. These results suggest that the SSH technique is applicable to many molecular genetic and positional cloning studies for the identification of disease, developmental, tissue-specific, or other differentially expressed genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rare nucleated fetal cells circulate within maternal blood. Noninvasive prenatal diagnosis by isolation and genetic analysis of these cells is currently being undertaken. We sought to determine if genetic evidence existed for persistent circulation of fetal cells from prior pregnancies. Venous blood samples were obtained from 32 pregnant women and 8 nonpregnant women who had given birth to males 6 months to 27 years earlier. Mononuclear cells were sorted by flow cytometry using antibodies to CD antigens 3, 4, 5, 19, 23, 34, and 38. DNA within sorted cells, amplified by PCR for Y chromosome sequences, was considered predictive of a male fetus or evidence of persistent male fetal cells. In the 32 pregnancies, male DNA was detected in 13 of 19 women carrying a male fetus. In 4 of 13 pregnancies with female fetuses, male DNA was also detected. All of the 4 women had prior pregnancies; 2 of the 4 had prior males and the other 2 had terminations of pregnancy. In 6 of the 8 nonpregnant women, male DNA was detected in CD34+CD38+ cells, even in a woman who had her last son 27 years prior to blood sampling. Our data demonstrate the continued maternal circulation of fetal CD34+ or CD34+CD38+ cells from a prior pregnancy. The prolonged persistence of fetal progenitor cells may represent a human analogue of the microchimerism described in the mouse and may have significance in development of tolerance of the fetus. Pregnancy may thus establish a long-term, low-grade chimeric state in the human female.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Representational difference analysis was used to identify strain-specific differences in the pseudoautosomal region (PAR) of mouse X and Y chromosomes. One second generation (C57BL/6 x Mus spretus) x Mus spretus interspecific backcross male carrying the C57BL/6 (B6) PAR was used for tester DNA. DNA from five backcross males from the same generation that were M. spretus-type for the PAR was pooled for the driver. A cloned probe designated B6-38 was recovered that is B6-specific in Southern analysis. Analysis of genomic DNA from several inbred strains of laboratory mice and diverse Mus species and subspecies identified a characteristic Pst I pattern of fragment sizes that is present only in the C57BL family of strains. Hybridization was observed with sequences in DBA/2J and to a limited extent with Mus musculus (PWK strain) and Mus castaneus DNA. No hybridization was observed in DNA of different Mus species, M. spretus, M. hortulanus, and M. caroli. Genetic analyses of B6-38 was conducted using C57BL congenic males that carry M. spretus alleles for distal X chromosome loci and the PAR and outcrosses of heterozygous congenic females with M. spretus. These analyses demonstrated that the B6-38 sequences were inherited with both the X and Y chromosome. B6-38 sequences were genetically mapped as a locus within the PAR using two interspecific backcrosses. The locus defined by B6-38 is designated DXYRp1. Preliminary analyses of recombination between the distal X chromosome gene amelogenin (Amg) and the PAR loci for either TelXY or sex chromosome association (Sxa) suggest that the locus DXYRp1 maps to the distal portion of the PAR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed a modified rhodamine (Rho) staining procedure to study uptake and efflux in murine hematopoietic stem cells. Distinct populations of Rho++ (bright), Rho+ (dull), and Rho- (negative) cells could be discriminated. Sorted Rho- cells were subjected to a second Rho staining procedure with the P-glycoprotein blocking agent verapamil (VP). Most cells became Rho positive [Rho-/Rho(VP)+ cells] and some remained Rho negative [Rho-/Rho(VP)- cells]. These cell fractions were characterized by their marrow-repopulating ability in a syngeneic, sex-mismatch transplantation model. Short-term repopulating ability was determined by recipient survival for at least 6 weeks after lethal irradiation and transplantation--i.e., radioprotection. Long-term repopulating ability at 6 months after transplantation was measured by fluorescence in situ hybridization with a Y-chromosome-specific probe, by graft function and recipient survival. Marrow-repopulating cells were mainly present in the small Rho- cell fraction. Transplantation of 30 Rho- cells resulted in 50% radioprotection and > 80% donor repopulation in marrow, spleen, and thymus 6 months after transplantation. Cotransplantation of cells from both fractions in individual mice directly showed that within this Rho- cell fraction, the Rho-/Rho(VP)+ cells exhibited mainly short-term and the Rho-/Rho(VP)- cells exhibited mainly long-term repopulating ability. Our results indicate that hematopoietic stem cells have relatively high P-glycoprotein expression and that the cells responsible for long-term repopulating ability can be separated from cells exhibiting short-term repopulating ability, probably by a reduced mitochondrial Rho-binding capacity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A PCR-based assay has been devised for the detection and semiquantitation of cells originating from a few donor hematopoietic stem cells (HSCs) in a background of recipient cells. Upon sequencing a segment of murine Y chromosome contained in the plasmid pY2, oligonucleotide primers were designed for specific amplification of the Y chromosome-restricted segment. The HSCs were isolated from the bone marrow of mice on day 4 following a single i.v. injection of 5-fluorouracil and were readily distinguished from other bone marrow elements by the characteristics of low density, absence of lineage-specific surface markers, lack of expression of transferrin receptor, and a high expression of major histocompatibility complex class I antigen. Injection of as few as four such HSCs was shown to produce donor-derived cells (including lymphoid cells) for at least 8 months after transplantation into syngeneic female recipients. Retransplantation, employing 10(6) bone marrow cells from the initial recipients, also yielded clear evidence of repopulation with detectable levels of male donor cells. On statistical grounds, it is clear that long-term repopulation in vivo may result from even a single HSC having the characteristics defined herein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Males of Drosophila melanogaster lacking the Y chromosome-linked crystal locus show multiple meiotic alterations including chromosome disorganization and prominent crystal formation in primary spermatocytes. These alterations are due to the derepression of the X chromosome-linked Stellate sequences. To understand how the derepression of the Stellate elements gives rise to these abnormalities, we have expressed the protein encoded by the Stellate sequences in bacteria and produced an antibody against the fusion protein. Immunostaining of crystal- testes has clearly shown that the Stellate protein is a major component of the crystals. Moreover, in vitro experiments have shown that this protein can interact with the catalytic alpha subunit of casein kinase 2 enzyme, altering its activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pallido-ponto-nigral degeneration (PPND) is one of the most well characterized familial neurodegenerative disorders linked to chromosome 17q21–22. These hereditary disorders are known collectively as frontotemporal dementia (FTD) and parkinsonism linked to chromosome 17 (FTDP-17). Although the clinical features and associated regional variations in the neuronal loss observed in different FTDP-17 kindreds are diverse, the diagnostic lesions of FTDP-17 brains are tau-rich filaments in the cytoplasm of specific subpopulations of neurons and glial cells. The microtubule associated protein (tau) gene is located on chromosome 17q21–22. For these reasons, we investigated the possibility that PPND and other FTDP-17 syndromes might be caused by mutations in the tau gene. Two missense mutations in exon 10 of the tau gene that segregate with disease, Asn279Lys in the PPND kindred and Pro301Leu in four other FTDP-17 kindreds, were found. A third mutation was found in the intron adjacent to the 3′ splice site of exon 10 in patients from another FTDP-17 family. Transcripts that contain exon 10 encode tau isoforms with four microtubule (MT)-binding repeats (4Rtau) as opposed to tau isoforms with three MT-binding repeats (3Rtau). The insoluble tau aggregates isolated from brains of patients with each mutation were analyzed by immunoblotting using tau-specific antibodies. For each of three mutations, abnormal tau with an apparent Mr of 64 and 69 was observed. The dephosphorylated material comigrated with tau isoforms containing exon 10 having four MT-binding repeats but not with 3Rtau. Thus, the brains of patients with both the missense mutations and the splice junction mutation contain aggregates of insoluble 4Rtau in filamentous inclusions, which may lead to neurodegeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that both a centromere (CEN) and a replication origin are necessary for plasmid maintenance in the yeast Yarrowia lipolytica (Vernis et al., 1997). Because of this requirement, only a small number of centromere-proximal replication origins have been isolated from Yarrowia. We used a CEN-based plasmid to obtain noncentromeric origins, and several new fragments, some unique and some repetitive sequences, were isolated. Some of them were analyzed by two-dimensional gel electrophoresis and correspond to actual sites of initiation (ORI) on the chromosome. We observed that a 125-bp fragment is sufficient for a functional ORI on plasmid, and that chromosomal origins moved to ectopic sites on the chromosome continue to act as initiation sites. These Yarrowia origins share an 8-bp motif, which is not essential for origin function on plasmids. The Yarrowia origins do not display any obvious common structural features, like bent DNA or DNA unwinding elements, generally present at or near eukaryotic replication origins. Y. lipolytica origins thus share features of those in the unicellular Saccharomyces cerevisiae and in multicellular eukaryotes: they are discrete and short genetic elements without sequence similarity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes.