23 resultados para XANTHENE DYES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternative models to describe the endocytosis phase of synaptic vesicle recycling are associated with time scales of vesicle recovery ranging from milliseconds to tens of seconds. There have been suggestions that one of the major models, envisioned as a slow process that occurs only after complete fusion of the vesicle membrane with the neurolemma, might be applicable only under conditions of heavy, nonphysiological stimulation. Using FM 1-43 and similar fluorescent probes to label recycling synaptic vesicles in rat hippocampal neurons, we have measured the kinetics of endocytosis with a wide range of action-potential-driven exocytotic loads. Our results indicate that when either 5% or 25% of the vesicle pool is used, vesicles are recovered with a half-time on the order of 20 s (24 degrees C). This endocytosis rate was not influenced by operations designed to alter intracellular Ca2+ during membrane retrieval, suggesting that residual Ca2+ after strong stimuli probably does not greatly retard endocytosis. Finally, we have shown that vesicle-destaining kinetics are not strongly influenced by the substantially differing rates at which two marker dyes tested dissociate from membranes. This observation suggests that vesicles remain open long enough for essentially complete dissociation of even the slower dye (a few seconds) or, alternatively, that both dyes readily escape vesicle membrane by lateral diffusion through any exocytotic opening. These data seem most consistent with applicability of the slow-endocytosis, complete-fusion model at low as well as high levels of exocytosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rigid dinitrile ligand was synthesized from two xanthene units condensed to a naphthalene-1,4,5,8-diimide spacer. The rigidity and C shape of the ligand gave exclusively trans complexes with Pd(II), Ag(I), and Au(I). Evidence for complexation, coordination geometry, and stoichiometry was provided by a combination of 1H NMR, 19F NMR, and IR spectroscopy. The AuBF4 and PdCl2 complexes were shown to have a 1:1 (metal-to-ligand) stoichiometry and the AgBF4 complex was shown to have a 1:2 stoichiometry in solution. The preorganization of the dinitrile ligand resulted in complexes much more stable than their monodentate counterparts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BEN/SC1/DM-GRASP is a membrane glycoprotein of the immunoglobulin superfamily isolated in the chick by several groups, including ours. Its expression is strictly developmentally regulated in several cell types of the nervous and hemopoietic systems and in certain epithelia. Each of these cell types expresses isoforms of BEN which differ by their level of N-glycosylation and by the presence or absence of the HNK-1 carbohydrate epitope. In the present work, the influence of glycosylation on BEN homophilic binding properties was investigated by two in vitro assays. First, each BEN isoform was covalently coupled to microspheres carrying different fluorescent dyes and an aggregation test was performed. We found that homophilic aggregates form indifferently between the same or different BEN isoforms, showing that glycosylation does not affect BEN homophilic binding properties. This was confirmed in the second test, where the BEN-coated microspheres bound to the neurites of BEN- expressing neurons, irrespective of the isoform considered. The transient expression of the BEN antigen on hemopoietic progenitors prompted us to see whether it might play a role in their proliferation and differentiation. When added to hemopoietic progenitor cells in an in vitro colony formation assay anti-BEN immunoglobulin strongly inhibited myeloid, but not erythroid, colony formation although both types of precursors express the molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blastocyst-derived pluripotent mouse embryonic stem cells can differentiate in vitro to form so-called embryoid bodies (EBs), which recapitulate several aspects of murine embryogenesis. We used this in vitro model to study oxygen supply and consumption as well as the response to reduced oxygenation during the earliest stages of development. EBs were found to grow equally well when cultured at 20% (normoxia) or 1% (hypoxia) oxygen during the first 5 days of differentiation. Microelectrode measurements of pericellular oxygen tension within 13- to 14-day-old EBs (diameter 510-890 micron) done at 20% oxygen revealed efficient oxygenation of the EBs' core region. Confocal laser scanning microscopy analysis of EBs incubated with fluorescent dyes that specifically stain living cells confirmed that the cells within an EB were viable. To determine the EBs' capability to sense low oxygen tension and to specifically respond to low ambient oxygen by modulating gene expression we quantified aldolase A and vascular endothelial growth factor (VEGF) mRNAs, since expression of these genes is upregulated by hypoxia in a variety of cells. Compared with the normoxic controls, we found increased aldolase A and VEGF mRNA levels after exposing 8- to 9-day-old EBs to 1% oxygen. We propose that EBs represent a powerful tool to study oxygen-regulated gene expression during the early steps of embryogenesis, where the preimplantation conceptus resides in a fluid environment with low oxygen tension until implantation and vascularization allow efficient oxygenation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At alkaline pH the bacteriorhodopsin mutant D85N, with aspartic acid-85 replaced by asparagine, is in a yellow form (lambda max approximately 405 nm) with a deprotonated Schiff base. This state resembles the M intermediate of the wild-type photocycle. We used time-resolved methods to show that this yellow form of D85N, which has an initially unprotonated Schiff base and which lacks the proton acceptor Asp-85, transports protons in the same direction as wild type when excited by 400-nm flashes. Photoexcitation leads in several milliseconds to the formation of blue (630 nm) and purple (580 nm) intermediates with a protonated Schiff base, which decay in tens of seconds to the initial state (400 nm). Experiments with pH indicator dyes show that at pH 7, 8, and 9, proton uptake occurs in about 5-10 ms and precedes the slow release (seconds). Photovoltage measurements reveal that the direction of proton movement is from the cytoplasmic to the extracellular side with major components on the millisecond and second time scales. The slowest electrical component could be observed in the presence of azide, which accelerates the return of the blue intermediate to the initial yellow state. Transport thus occurs in two steps. In the first step (milliseconds), the Schiff base is protonated by proton uptake from the cytoplasmic side, thereby forming the blue state. From the pH dependence of the amplitudes of the electrical and photocycle signals, we conclude that this reaction proceeds in a similar way as in wild type--i.e., via the internal proton donor Asp-96. In the second step (seconds) the Schiff base deprotonates, releasing the proton to the extracellular side.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fermentation of nonabsorbed nutrients in the colon generates high concentrations of NH3/NH4+ in the colonic lumen. NH3 is a small, lipophilic neutral weak base that readily permeates almost all cell membranes, whereas its conjugate weak acid NH4+ generally crosses membranes much more slowly. It is not known how colonocytes maintain intracellular pH in the unusual acid-base environment of the colon, where permeant acid-base products of fermentation exist in high concentration. To address this issue, we hand dissected and perfused single, isolated crypts from rabbit proximal colon, adapting techniques from renal-tubule microperfusion. Crypt perfusion permits control of solutions at the apical (luminal) and basolateral (serosal) surfaces of crypt cells. We assessed apical- vs. basolateral-membrane transport of NH3/NH4+ by using fluorescent dyes and digital imaging to monitor intracellular pH of microvacuolated crypt cells as well as luminal pH. We found that, although the basolateral membranes have normal NH3/NH4+ permeability properties, there is no evidence for transport of either NH3 or NH4+ across the apical borders of these crypt cells. Disaggregating luminal mucus did not increase the transport of NH3/NH4+ across the apical border. We conclude that, compared to the basolateral membrane, the apical border of crypt colonocytes has a very low permeability-area product for NH3/NH4+. This barrier may represent an important adaptation for the survival of crypt cells in the environment of the colon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurite outgrowth across spinal cord lesions in vitro is rapid in preparations isolated from the neonatal opossum Monodelphis domestica up to the age of 12 days. At this age oligodendrocytes, myelin, and astrocytes develop and regeneration ceases to occur. The role of myelin-associated neurite growth-inhibitory proteins, which increase in concentration at 10-13 days, was investigated in culture by applying the antibody IN-1, which blocks their effects. In the presence of IN-1, 22 out of 39 preparations from animals aged 13-17 days showed clear outgrowth of processes into crushes. When 34 preparations from 13-day-old animals were crushed and cultured without antibody, no axons grew into the lesion. The success rate with IN-1 was comparable to that seen in younger animals but the outgrowth was less profuse. IN-1 was shown by immunocytochemistry to penetrate the spinal cord. Other antibodies which penetrated the 13-day cord failed to promote fiber outgrowth. To distinguish between regeneration by cut neurites and outgrowth by developing uncut neurites, fibers in the ventral fasciculus were prelabeled with carbocyanine dyes and subsequently injured. The presence of labeled fibers in the lesion indicated that IN-1 promoted regeneration. These results show that the development of myelin-associated growth-inhibitory proteins contributes to the loss of regeneration as the mammalian central nervous system matures. The definition of a critical period for regeneration, coupled with the ability to apply trophic as well as inhibitory molecules to the culture, can permit quantitative assessment of molecular interactions that promote spinal cord regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorescent dye-labeled DNA primers have been developed that exploit fluorescence energy transfer (ET) to optimize the absorption and emission properties of the label. These primers carry a fluorescein derivative at the 5' end as a common donor and other fluorescein and rhodamine derivatives attached to a modified thymidine residue within the primer sequence as acceptors. Adjustment of the donor-acceptor spacing through the placement of the modified thymidine in the primer sequence allowed generation of four primers, all having strong absorption at a common excitation wavelength (488 nm) and fluorescence emission maxima of 525, 555, 580, and 605 nm. The ET efficiency of these primers ranges from 65% to 97%, and they exhibit similar electrophoretic mobilities by gel electrophoresis. With argon-ion laser excitation, the fluorescence of the ET primers and of the DNA sequencing fragments generated with ET primers is 2- to 6-fold greater than that of the corresponding primers or fragments labeled with single dyes. The higher fluorescence intensity of the ET primers allows DNA sequencing with one-fourth of the DNA template typically required when using T7 DNA polymerase. With single-stranded M13mp18 DNA as the template, a typical sequencing reaction with ET primers on a commercial sequencer provided DNA sequences with 99.8% accuracy in the first 500 bases. ET primers should be generally useful in the development of other multiplex DNA sequencing and analysis methods.