22 resultados para Wirtschaftsachstum, Demokratie, Olson, defekte Demokratie
Resumo:
Introduction of genetic elements derived from a viral pathogen's genome may be used to reduce the vectorial capacity of mosquitoes for that virus. A double subgenomic Sindbis virus expression system was utilized to transcribe sequences of LaCrosse (LAC) virus small (S) or medium (M) segment RNA in sense or antisense orientation; wild-type Sindbis and LaCrosse viruses have single-stranded RNA genomes, the former being positive sense and the latter being negative sense. Recombinant viruses were generated and used to infect Aedes albopictus (C6/36) mosquito cells, which were challenged with wild-type LAC virus and then assayed for LAC virus replication. Several recombinant viruses containing portions of the LAC S segment were capable of inducing varying degrees of interference to the challenge virus. Cells infected with TE/3'2J/ANTI-S virus, expressing full-length negative-sense S RNA of LAC virus, yielded 3-6 log10TCID50 (tissue culture 50% infective dose) less LAC virus per ml than did cells infected with a double subgenomic sindbis virus containing no LAC insert. When C6/36 cells infected with TE/3'2J/ANTI-S were challenged with closely related heterologous bunyaviruses, a similar inhibitory effect was seen. Adult Ae. triseriatus mosquitoes infected with TE/3'2J/ANTI-S were also resistant to challenge by LAC virus. Organs that were productively infected by the double subgenomic Sindbis virus expressing the LAC anti-S sequences demonstrated little LAC virus or antigen. These studies indicate that expression of carefully selected antiviral sequences derived from the pathogen's genome may result in efficacious molecular viral interference in mosquito cells and, more importantly, in mosquitoes.
Resumo:
Smooth muscle cell plasticity is considered a prerequisite for atherosclerosis and restenosis following angioplasty and bypass surgery. Identification of transcription factors that specify one smooth muscle cell phenotype over another therefore may be of major importance in understanding the molecular basis of these vascular disorders. Homeobox genes exemplify one class of transcription factors that could govern smooth muscle cell phenotypic diversity. Accordingly, we screened adult and fetal human smooth muscle cell cDNA libraries with a degenerate oligonucleotide corresponding to a highly conserved region of the homeodomain with the idea that homeobox genes, if present, would display a smooth muscle cell phenotype-dependent pattern of expression. No homeobox genes were detected in the adult human smooth muscle cell library; however, five nonparalogous homeobox genes were uncovered from the fetal library (HoxA5, HoxA11, HoxB1, HoxB7, and HoxC9). Northern blotting of adult and fetal tissues revealed low and restricted expression of all five homeobox genes. No significant differences in transcripts of HoxA5, HoxA11, and HoxB1 were detected between adult or fetal human smooth muscle cells in culture. HoxB7 and HoxC9, however, showed preferential mRNA expression in fetal human smooth muscle cells that appeared to correlate with the age of the donor. This phenotype-dependent expression of homeobox genes was also noted in rat pup versus adult smooth muscle cells. While similar differences in gene expression have been reported between subsets of smooth muscle cells from rat vessels of different-aged animals or clones of rat smooth muscle, our findings represent a demonstration of a transcription factor distinguishing two human smooth muscle cell phenotypes.
Resumo:
The existence of integrin-like proteins in Candida albicans has been postulated because monoclonal antibodies to the leukocyte integrins alpha M and alpha X bind to blastospores and germ tubes, recognize a candidal surface protein of approximately 185 kDa, and inhibit candidal adhesion to human epithelium. The gene alpha INT1 was isolated from a library of C. albicans genomic DNA by screening with a cDNA probe from the transmembrane domain of human alpha M. The predicted polypeptide (alpha Int1p) of 188 kDa contains several motifs common to alpha M and alpha X: a putative I domain, two EF-hand divalent cation-binding sites, a transmembrane domain, and a cytoplasmic tail with a single tyrosine residue. An internal RGD tripeptide is also present. Binding of anti-peptide antibodies raised to potential extracellular domains of alpha Int1p confirms surface localization in C. albicans blastopores. By Southern blotting, alpha INT1 is unique to C. albicans. Expression of alpha INT1 under control of a galactose-inducible promoter led to the production of germ tubes in haploid Saccharomyces cerevisiae and in the corresponding ste12 mutant. Germ tubes were not observed in haploid yeast transformed with vector alone, in transformants expressing a galactose-inducible gene from Chlamydomonas, or in transformants grown in the presence of glucose or raffinose. Transformants producing alpha Int1p bound an anti-alpha M monoclonal antibody and exhibited enhanced aggregation. Studies of alpha Int1p reveal novel roles for primitive integrin-like proteins in adhesion and in STE12-independent morphogenesis.
Resumo:
The structures of Sindbis virus and Ross River virus complexed with Fab fragments from monoclonal antibodies have been determined from cryoelectron micrographs. Both antibodies chosen for this study bind to regions of the virions that have been implicated in cell-receptor recognition and recognize epitopes on the E2 glycoprotein. The two structures show that the Fab fragments bind to the outermost tip of the trimeric envelope spike protein. Hence, the same region of both the Sindbis virus and Ross River virus envelope spike is composed of E2 and is involved in recognition of the cellular receptor.
Resumo:
Chronic exposure of HIT-T15 beta cells to elevated glucose concentrations leads to decreased insulin gene transcription. The reduction in expression is accompanied by diminished binding of a glucose-sensitive transcription factor (termed GSTF) that interacts with two (A+T)-rich elements within the 5' flanking control region of the insulin gene. In this study we examined whether GSTF corresponds to the recently cloned insulin gene transcription factor STF-1, a homeodomain protein whose expression is restricted to the nucleus of endodermal cells of the duodenum and pancreas. We found that an affinity-purified antibody recognizing STF-1 supershifted the GSTF activator complex formed from HIT-T15 extracts. In addition, we demonstrated a reduction in STF-1 mRNA and protein levels that closely correlated with the change in GSTF binding in HIT-T15 cells chronically cultured under supraphysiologic glucose concentrations. The reduction in STF-1 expression in these cells could be accounted for by a change in the rate of STF-1 gene transcription, suggesting a posttranscriptional control mechanism. In support of this hypothesis, no STF-1 mRNA accumulated in HIT-T15 cells passaged in 11.1 mM glucose. The only RNA species detected was a 6.4-kb STF-1 RNA species that hybridized with 5' and 3' STF-1-specific cDNA probes. We suggest that the 6.4-kb RNA represents an STF-1 mRNA precursor and that splicing of this RNA is defective in these cells. Overall, this study suggests that reduced expression of a key transcriptional regulatory factor, STF-1, contributes to the decrease in insulin gene transcription in HIT-T15 cells chronically cultured in supraphysiologic glucose concentration.
Resumo:
The recently cloned, distant member of the transforming growth factor beta (TGF-beta) family, glial cell line-derived neurotrophic factor (GDNF), has potent trophic actions on fetal mesencephalic dopamine neurons. GDNF also has protective and restorative activity on adult mesencephalic dopaminergic neurons and potently protects motoneurons from axotomy-induced cell death. However, evidence for a role for endogenous GDNF as a target-derived trophic factor in adult midbrain dopaminergic circuits requires documentation of specific transport from the sites of synthesis in the target areas to the nerve cell bodies themselves. Here, we demonstrate that GDNF is retrogradely transported by mesencephalic dopamine neurons of the nigrostriatal pathway. The pattern of retrograde transport following intrastriatal injections indicates that there may be subpopulations of neurons that are GDNF responsive. Retrograde axonal transport of biologically active 125I-labeled GDNF was inhibited by an excess of unlabeled GDNF but not by an excess of cytochrome c. Specificity was further documented by demonstrating that another TGF-beta family member, TGF-beta 1, did not appear to affect retrograde transport. Retrograde transport was also demonstrated by immunohistochemistry by using intrastriatal injections of unlabeled GDNF. GDNF immunoreactivity was found specifically in dopamine nerve cell bodies of the substantia nigra pars compacta distributed in granules in the soma and proximal dendrites. Our data implicate a specific receptor-mediated uptake mechanism operating in the adult. Taken together, the present findings suggest that GDNF acts endogenously as a target-derived physiological survival/maintenance factor for dopaminergic neurons.
Resumo:
Residue replacements were made at five positions (Arg-73, Asp-76, Tyr-87, Asp-106, and Asp-201) in the Halobacterium salinarium phototaxis receptor sensory rhodopsin I (SR-I) by site-specific mutagenesis. The sites were chosen for their correspondence in position to residues of functional importance in the homologous light-driven proton pump bacteriorhodopsin found in the same organism. This work identifies a residue in SR-I shown to be of vital importance to its attractant signaling function: Asp-201. The effect of the substitution with the isosteric asparagine is to convert the normally attractant signal of orange light stimulation to a repellent signal. In contrast, similar neutral substitution of the four other ionizable residues near the photoactive site allows essentially normal attractant and repellent phototaxis signaling. Wild-type two-photon repellent signaling by the receptor is intact in the Asp-201 mutant, genetically separating the wild-type attractant and repellent signal generation processes. A possible explanation and implications of the inverted signaling are discussed. Results of neutral residue substitution for Asp-76 confirm our previous evidence that proton transfer reactions involving this residue are not important to phototaxis but that Asp-76 functions as the Schiff base proton acceptor in proton translocation by transducer-free SR-I.