34 resultados para Wild felids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-incompatibility RNases (S-RNases) are an allelic series of style glycoproteins associated with rejection of self-pollen in solanaceous plants. The nucleotide sequences of S-RNase alleles from several genera have been determined, but the structure of the gene products has only been described for those from Nicotiana alata. We report on the N-glycan structures and the disulfide bonding of the S3-RNase from wild tomato (Lycopersicon peruvianum) and use this and other information to construct a model of this molecule. The S3-RNase has a single N-glycosylation site (Asn-28) to which one of three N-glycans is attached. S3-RNase has seven Cys residues; six are involved in disulfide linkages (Cys-16-Cys-21, Cys-46-Cys-91, and Cys-166-Cys-177), and one has a free thiol group (Cys-150). The disulfide-bonding pattern is consistent with that observed in RNase Rh, a related RNase for which radiographic-crystallographic information is available. A molecular model of the S3-RNase shows that four of the most variable regions of the S-RNases are clustered on one surface of the molecule. This is discussed in the context of recent experiments that set out to determine the regions of the S-RNase important for recognition during the self-incompatibility response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptosis induced in myeloid leukemic cells by wild-type p53 was suppressed by different cleavage-site directed protease inhibitors, which inhibit interleukin-1 beta-converting enzyme-like, granzyme B and cathepsins B and L proteases. Apoptosis was also suppressed by the serine and cysteine protease inhibitor N-tosyl-L-phenylalanine chloromethylketone (TPCK) [corrected], but not by other serine or cysteine protease inhibitors including N alpha-p-tosyl-L-lysine chloromethylketone (TLCK), E64, pepstatin A, or chymostatin. Protease inhibitors suppressed induction of apoptosis by gamma-irradiation and cycloheximide but not by doxorubicin, vincristine, or withdrawal of interleukin 3 from interleukin 3-dependent 32D non-malignant myeloid cells. Induction of apoptosis in normal thymocytes by gamma-irradiation or dexamethasone was also suppressed by the cleavage-site directed protease inhibitors, but in contrast to the myeloid leukemic cells apoptosis in thymocytes was suppressed by TLCK but not by TPCK. The results indicate that (i) inhibitors of interleukin-1 beta-converting enzyme-like proteases and some other protease inhibitors suppressed induction of apoptosis by wild-type p53 and certain p53-independent pathways of apoptosis; (ii) the protease inhibitors together with the cytokines interleukin 6 and interferon-gamma or the antioxidant butylated hydroxyanisole gave a cooperative protection against apoptosis; (iii) these protease inhibitors did not suppress induction of apoptosis by some cytotoxic agents or by viability-factor withdrawal from 32D cells, whereas these pathways of apoptosis were suppressed by cytokines; (iv) there are cell type differences in the proteases involved in apoptosis; and (v) there are multiple pathways leading to apoptosis that can be selectively induced and suppressed by different agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the relative fitness of sons and daughters differs, sex-allocation theory predicts that it would be adaptive for individuals to adjust their investment in different sexes of offspring. Sex ratio adjustment by females in response to the sexual attractiveness of their mate would be an example of this. In vertebrates the existence of this form of sex ratio adjustment is controversial and may be confounded with sex-biased mortality, particularly in sexually size-dimorphic species. Here we use PCR amplification of a conserved W-chromosome-linked gene to show that the sex ratio within broods of a natural population of sexually size-monomorphic collared flycatchers Ficedula albicollis is related to the size of their father's forehead patch, a heritable secondary sexual character implicated in female choice. Experimental manipulations of paternal investment, which influence the size of his character in future breeding attempts, result in corresponding changes in the sex ratio of offspring born to males in those breeding attempts. In contrast, manipulations of maternal investment have no effect on future sex ratios, and there is no relationship between variables predicting the reproductive value of the brood and nestling sex ratio. Analysis of recruitment of offspring reveals similar patterns of sex ratio bias. The results suggest that female collared flycatchers be able to adjust the sex ratio of eggs ovulated in response to the phenotype of their mate. This finding is most consistent with "genetic quality" models of sexual selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defective-interfering viruses are known to modulate virus pathogenicity. We describe conditionally replicating HIV-1 (crHIV) vectors that interfere with wild-type HIV-1 (wt-HIV) replication and spread. crHIV vectors are defective-interfering HIV genomes that do not encode viral proteins and replicate only in the presence of wt-HIV helper virus. In cells that contain both wt-HIV and crHIV genomes, the latter are shown to have a selective advantage for packaging into progeny virions because they contain ribozymes that cleave wt-HIV RNA but not crHIV RNA. A crHIV vector containing a triple anti-U5 ribozyme significantly interferes with wt-HIV replication and spread. crHIV vectors are also shown to undergo the full viral replicative cycle after complementation with wt-HIV helper-virus. The application of defective interfering crHIV vectors may result in competition with wt-HIVs and decrease pathogenic viral loads in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Tsc2 gene, which is mutationally inactivated in the germ line of some families with tuberous sclerosis, encodes a large, membrane-associated GTPase activating protein (GAP) designated tuberin. Studies of the Eker rat model of hereditary cancer strongly support the role of Tsc2 as a tumor suppressor gene. In this study, the biological activity of tuberin was assessed by expressing the wild-type Tsc2 gene in tumor cell lines lacking functional tuberin and also in rat fibroblasts with normal levels of endogenous tuberin. The colony forming efficiency of Eker rat-derived renal carcinoma cells was significantly reduced following reintroduction of wild-type Tsc2. Tumor cells expressing the transfected Tsc2 gene became more anchorage-dependent and lost their ability to form tumors in severe combined immunodeficient mice. At the cellular level, restoration of tuberin expression caused morphological changes characterized by enlargement of the cells and increased contact inhibition. As with the full-length Tsc2 gene, a clone encoding only the C terminus of tuberin (amino acids 1049-1809, including the GAP domain) was capable of reducing both colony formation and in vivo tumorigenicity when transfected into the Eker rat tumor cells. In normal Rat1 fibroblasts, conditional overexpression of tuberin also suppressed colony formation and cell growth in vitro. These results provide direct experimental evidence for the tumor suppressor function of Tsc2 and suggest that the tuberin C terminus plays an important role in this activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptosis induced by wild-type p53 or cytotoxic compounds in myeloid leukemic cells can be inhibited by the cytokines interleukin 6, interleukin 3, granulocyte-macrophage colony-stimulating factor, and interferon gamma and by antioxidants. The antioxidants and cytokines showed a cooperative protective effect against induction of apoptosis. Cells with a higher intrinsic level of peroxide production showed a higher sensitivity to induction of apoptosis and required a higher cytokine concentration to inhibit apoptosis. Decreasing the intrinsic oxidative stress in cells by antioxidants thus inhibited apoptosis, whereas increasing this intrinsic stress by adding H2O2 enhanced apoptosis. Induction of apoptosis by wild-type p53 was not preceded by increased peroxide production or lipid peroxidation and the protective effect of cytokines was not associated with a decrease in these properties. The results indicate that the intrinsic degree of oxidative stress can regulate cell susceptibility to wild-type p53-dependent and p53-independent induction of apoptosis and the ability of cytokines to protect cells against apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insulin-like growth factor I receptor (IGF-I-R) plays a critical role in transformation events. It is highly overexpressed in most malignant tissues where it functions as an anti-apoptotic agent by enhancing cell survival. Tumor suppressor p53 is a nuclear transcription factor that blocks cell cycle progression and induces apoptosis. p53 is the most frequently mutated gene in human cancer. Cotransfection of Saos-2 (os-teosarcoma-derived cells) and RD (rhabdomyosarcoma-derived cells) cells with IGF-I-R promoter constructs driving luciferase reporter genes and with wild-type p53 expression vectors suppressed promoter activity in a dose-dependent manner. This effect of p53 is mediated at the level of transcription and it involves interaction with TBP, the TATA box-binding component of TFIID. On the other hand, three tumor-derived mutant forms of p53 (mut 143, mut 248, and mut 273) stimulated the activity of the IGF-I-R promoter and increased the levels of IGF-I-R/luciferase fusion mRNA. These results suggest that wild-type p53 has the potential to suppress the IGF-I-R promoter in the postmitotic, fully differentiated cell, thus resulting in low levels of receptor gene expression in adult tissues. Mutant versions of p53 protein, usually associated with malignant states, can derepress the IGF-I-R promoter, with ensuing mitogenic activation by locally produced or circulating IGFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several recent reports indicate that mobile elements are frequently found in and flanking many wild-type plant genes. To determine the extent of this association, we performed computer-based systematic searches to identify mobile elements in the genes of two "model" plants, Oryza sativa (domesticated rice) and Arabidopsis thaliana. Whereas 32 common sequences belonging to nine putative mobile element families were found in the noncoding regions of rice genes, none were found in Arabidopsis genes. Five of the nine families (Gaijin, Castaway, Ditto, Wanderer, and Explorer) are first described in this report, while the other four were described previously (Tourist, Stowaway, p-SINE1, and Amy/LTP). Sequence similarity, structural similarity, and documentation of past mobility strongly suggests that many of the rice common sequences are bona fide mobile elements. Members of four of the new rice mobile element families are similar in some respects to members of the previously identified inverted-repeat element families, Tourist and Stowaway. Together these elements are the most prevalent type of transposons found in the rice genes surveyed and form a unique collection of inverted-repeat transposons we refer to as miniature inverted-repeat transposable elements or MITEs. The sequence and structure of MITEs are clearly distinct from short or long interspersed nuclear elements (SINEs or LINEs), the most common transposable elements associated with mammalian nuclear genes. Mobile elements, therefore, are associated with both animal and plant genes, but the identity of these elements is strikingly different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The predictability of genetic structure from social structure and differential mating success was tested in wild baboons. Baboon populations are subdivided into cohesive social groups that include multiple adults of both sexes. As in many mammals, males are the dispersing sex. Social structure and behavior successfully predicted molecular genetic measures of relatedness and variance in reproductive success. In the first quantitative test of the priority-of-access model among wild primates, the reproductive priority of dominant males was confirmed by molecular genetic analysis. However, the resultant high short-term variance in reproductive success did not translate into equally high long-term variance because male dominance status was unstable. An important consequence of high but unstable short-term variance is that age cohorts will tend to be paternal sibships and social groups will be genetically substructured by age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SecY protein of Escherichia coli is an integral membrane component of the protein export apparatus. Suppressor mutations in the secY gene (prlA alleles) have been isolated that restore the secretion of precursor proteins with defective signal sequences. These mutations have never been shown to affect the translocation of wild-type precursor proteins. Here, we report that prlA suppressor mutations relieve the proton-motive force (pmf) dependency of the translocation of wild-type precursors, both in vivo and in vitro. Furthermore, the proton-motive force dependency of the translocation of a precursor with a stably folded domain in the mature region was suppressed by prlA mutations in vitro. These data show that prlA mutations cause a general relaxation of the export apparatus rather than a specific change that results in bypassing of the recognition of the signal sequence. In addition, these results are indicative for a mechanism in which the proton-motive force stimulates translocation by altering the conformation of the translocon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tumor suppressor gene product p53 plays an important role in the cellular response to DNA damage from exogenous chemical and physical mutagens. Therefore, we hypothesized that p53 performs a similar role in response to putative endogenous mutagens, such as nitric oxide (NO). We report here that exposure of human cells to NO generated from an NO donor or from overexpression of inducible nitric oxide synthase (NOS2) results in p53 protein accumulation. In addition, expression of wild-type (WT) p53 in a variety of human tumor cell lines, as well as murine fibroblasts, results in down-regulation of NOS2 expression through inhibition of the NOS2 promoter. These data are consistent with the hypothesis of a negative feedback loop in which endogenous NO-induced DNA damage results in WT p53 accumulation and provides a novel mechanism by which p53 safeguards against DNA damage through p53-mediated transrepression of NOS2 gene expression, thus reducing the potential for NO-induced DNA damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wild-type actin and a mutant actin were isolated from yeast (Saccharomyces cerevisiae) and the polymerization properties were examined at pH 8.0 and 20 degrees C. The polymerization reaction was followed either by an increase in pyrene-labeled actin fluorescence or by a decrease in intrinsic fluorescence in the absence of pyrene-labeled actin. While similar to the properties of skeletal muscle actin, there are several important differences between the wild-type yeast and muscle actins. First, yeast actin polymerizes more rapidly than muscle actin under the same experimental conditions. The difference in rates may result from a difference in the steps involving formation of the nucleating species. Second, as measured with pyrene-labeled yeast actin, but not with intrinsic fluorescence, there is an overshoot in the fluorescence that has not been observed with skeletal muscle actin under the same conditions. Third, in order to simulate the polymerization process of wild-type yeast actin it is necessary to assume some fragmentation of the filaments. Finally, gelsolin inhibits polymerization of yeast actin but is known to accelerate the polymerization of muscle actin. A mutant actin (R177A/D179A) has also been isolated and studied. The mutations are at a region of contact between monomers across the long axis of the actin filament. This mutant polymerizes more slowly than wild type and filaments do not appear to fragment during polymerization. Elongation rates of the wild type and the mutant differ by only about 3-fold, and the slower polymerization of the mutant appears to result primarily from poorer nucleation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WT1 encodes a zinc-finger protein, expressed as distinct isoforms, that is inactivated in a subset of Wilms tumors. Both constitutional and somatic mutations disrupting the DNA-binding domain of WT1 result in a potentially dominant-negative phenotype. In generating inducible cell lines expressing wild-type isoforms of WT1 and WT1 mutants, we observed dramatic differences in the subnuclear localization of the induced proteins. The WT1 isoform that binds with high affinity to a defined DNA target, WT1(-KTS), was diffusely localized throughout the nucleus. In contrast, expression of an alternative splicing variant with reduced DNA binding affinity, WT1 (+KTS), or WT1 mutants with a disrupted zinc-finger domain resulted in a speckled pattern of expression within the nucleus. Although similar in appearance, the localization of WT1 variants to subnuclear clusters was clearly distinct from that of the essential splicing factor SC35, suggesting that WT1 is not directly involved in pre-mRNA splicing. Localization to subnuclear clusters required the N terminus of WT1, and coexpression of a truncated WT1 mutant and wild-type WT1(-KTS) resulted in their physical association, the redistribution of WT1(-KTS) from a diffuse to a speckled pattern, and the inhibition of its transactivational activity. These observations suggest that different WT1 isoforms and WT1 mutants have distinct subnuclear compartments. Dominant-negative WT1 proteins physically associate with wild-type WT1 in vivo and may result in its sequestration within subnuclear structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of 4a-carbinolamine dehydratase with the enzymatically synthesized natural substrate revealed non-Michaelis-Menten kinetics. A Hill coefficient of 1.8 indicates that the dehydratase exists as a multisubunit enzyme that shows cooperativity. A mild form of hyperphenylalaninemia with high 7-biopterin levels has been linked to mutations in the human 4a-carbinolamine dehydratase gene. We have now cloned and expressed two mutant forms of the protein based on a patient's DNA sequences. The kinetic parameters of the mutant C82R reveal a 60% decrease in Vmax but no change in Km (approximately 5 microM), suggesting that the cysteine residue is not involved in substrate binding. Its replacement by arginine possibly causes a conformational change in the active center. Like the wild-type enzyme, this mutant is heat stable and forms a tetramer. The susceptibility to proteolysis of C82R, however, is markedly increased in vitro compared with the wild-type protein. We have also observed a decrease in the expression levels of C82R protein in transfected mammalian cells, which could be due to proteolytic instability. The 18-amino acid-truncated mutant GLu-87--> termination could not be completely purified and characterized due to minute levels of expression and its extremely low solubility as a fusion protein. No dehydratase activity was detected in crude extracts from transformed bacteria or transfected mammalian cells. Considering the decrease in specific activity and stability of the mutants, we conclude that the patient probably has less than 10% residual dehydratase activity, which could be responsible for the mild hyperphenylalaninemia and the high 7-biopterin levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Camptothecin is a potent antineoplastic agent that interferes with the action of eukaryotic DNA topoisomerase I; the covalent enzyme-DNA intermediate is reversibly stabilized, leading to G2 arrest and cell death. We used a genetic screen to identify cellular factors, other than DNA topoisomerase I, that participate in the process of camptothecin-induced cell death. Following ethyl methanesulfonate mutagenesis of top1 delta yeast cells expressing plasmid-borne wild-type DNA topoisomerase I, six dominant suppressors of camptothecin toxicity were isolated that define a single genetic locus, sct1. Mutant SCT1 cells expressed DNA topoisomerase I protein of similar specific activity and camptothecin sensitivity to that of congenic, drug-sensitive sct1 cells, yet were resistant to camptothecin-mediated lethality. Moreover, camptothecin-treated SCT1 cells did not exhibit the G2-arrested, terminal phenotype characteristic of drug-treated wild-type cells. SCT1 cell sensitivity to other DNA-damaging agents suggests that alterations in SCT1 function suppress camptothecin-induced DNA damage produced in the presence of yeast DNA topoisomerase I.