27 resultados para Wheat rusts.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wheat (Triticum aestivum L.) was grown under CO2 partial pressures of 36 and 70 Pa with two N-application regimes. Responses of photosynthesis to varying CO2 partial pressure were fitted to estimate the maximal carboxylation rate and the nonphotorespiratory respiration rate in flag and preceding leaves. The maximal carboxylation rate was proportional to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content, and the light-saturated photosynthetic rate at 70 Pa CO2 was proportional to the thylakoid ATP-synthase content. Potential photosynthetic rates at 70 Pa CO2 were calculated and compared with the observed values to estimate excess investment in Rubisco. The excess was greater in leaves grown with high N application than in those grown with low N application and declined as the leaves senesced. The fraction of Rubisco that was estimated to be in excess was strongly dependent on leaf N content, increasing from approximately 5% in leaves with 1 g N m−2 to approximately 40% in leaves with 2 g N m−2. Growth at elevated CO2 usually decreased the excess somewhat but only as a consequence of a general reduction in leaf N, since relationships between the amount of components and N content were unaffected by CO2. We conclude that there is scope for improving the N-use efficiency of C3 crop species under elevated CO2 conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-affinity K+ uptake in plant roots is rapidly up-regulated when K+ is withheld and down-regulated when K+ is resupplied. These processes make important contributions to plant K+ homeostasis. A cDNA coding for a high-affinity K+ transporter, HKT1, was earlier cloned from wheat (Triticum aestivum L.) roots and functionally characterized. We demonstrate here that in both barley (Hordeum vulgare L.) and wheat roots, a rapid and large up-regulation of HKT1 mRNA levels resulted when K+ was withdrawn from growth media. This effect was specific for K+; withholding N caused a modest reduction of HKT1 mRNA levels. Up-regulation of HKT1 transcript levels in barley roots occurred within 4 h of removing K+, which corresponds to the documented increase of high-affinity K+ uptake in roots following removal of K+. Increased expression of HKT1 mRNA was evident before a decline in total root K+ concentration could be detected. Resupply of 1 mm K+ was sufficient to strongly reduce HKT1 transcript levels. In wheat root cortical cells, both membrane depolarizations in response to 100 μm K+, Cs+, and Rb+, and high-affinity K+ uptake were enhanced by K+ deprivation. Thus, in both plant systems the observed physiological changes associated with manipulating external K+ supply were correlated with levels of HKT1 mRNA expression. Implications of these findings for K+ sensing and regulation of the HKT1 mRNA levels in plant roots are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Durum wheat (Triticum turgidum L. var durum) cultivars exhibit lower Zn efficiency than comparable bread wheat (Triticum aestivum L.) cultivars. To understand the physiological mechanism(s) that confers Zn efficiency, this study used 65Zn to investigate ionic Zn2+ root uptake, binding, and translocation to shoots in seedlings of bread and durum wheat cultivars. Time-dependent Zn2+ accumulation during 90 min was greater in roots of the bread wheat cultivar. Zn2+ cell wall binding was not different in the two cultivars. In each cultivar, concentration-dependent Zn2+ influx was characterized by a smooth, saturating curve, suggesting a carrier-mediated uptake system. At very low solution Zn2+ activities, Zn2+ uptake rates were higher in the bread wheat cultivar. As a result, the Michaelis constant for Zn2+ uptake was lower in the bread wheat cultivar (2.3 μm) than in the durum wheat cultivar (3.9 μm). Low temperature decreased the rate of Zn2+ influx, suggesting that metabolism plays a role in Zn2+ uptake. Ca inhibited Zn2+ uptake equally in both cultivars. Translocation of Zn to shoots was greater in the bread wheat cultivar, reflecting the higher root uptake rates. The study suggests that lower root Zn2+ uptake rates may contribute to reduced Zn efficiency in durum wheat varieties under Zn-limiting conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies of photosynthetic acclimation to elevated CO2 have focused on the most recently expanded, sunlit leaves in the canopy. We examined acclimation in a vertical profile of leaves through a canopy of wheat (Triticum aestivum L.). The crop was grown at an elevated CO2 partial pressure of 55 Pa within a replicated field experiment using free-air CO2 enrichment. Gas exchange was used to estimate in vivo carboxylation capacity and the maximum rate of ribulose-1,5-bisphosphate-limited photosynthesis. Net photosynthetic CO2 uptake was measured for leaves in situ within the canopy. Leaf contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), light-harvesting-complex (LHC) proteins, and total N were determined. Elevated CO2 did not affect carboxylation capacity in the most recently expanded leaves but led to a decrease in lower, shaded leaves during grain development. Despite this acclimation, in situ photosynthetic CO2 uptake remained higher under elevated CO2. Acclimation at elevated CO2 was accompanied by decreases in both Rubisco and total leaf N contents and an increase in LHC content. Elevated CO2 led to a larger increase in LHC/Rubisco in lower canopy leaves than in the uppermost leaf. Acclimation of leaf photosynthesis to elevated CO2 therefore depended on both vertical position within the canopy and the developmental stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In wheat (Triticum aestivum) seedlings subjected to a mild water stress (water potential of −0.3 MPa), the leaf-elongation rate was reduced by one-half and the mitotic activity of mesophyll cells was reduced to 42% of well-watered controls within 1 d. There was also a reduction in the length of the zone of mesophyll cell division to within 4 mm from the base compared with 8 mm in control leaves. However, the period of division continued longer in the stressed than in the control leaves, and the final cell number in the stressed leaves reached 85% of controls. Cyclin-dependent protein kinase enzymes that are required in vivo for DNA replication and mitosis were recovered from the meristematic zone of leaves by affinity for p13suc1. Water stress caused a reduction in H1 histone kinase activity to one-half of the control level, although amounts of the enzyme were unaffected. Reduced activity was correlated with an increased proportion of the 34-kD Cdc2-like kinase (an enzyme sharing with the Cdc2 protein of other eukaryotes the same size, antigenic sites, affinity for p13suc1, and H1 histone kinase catalytic activity) deactivated by tyrosine phosphorylation. Deactivation to 50% occurred within 3 h of stress imposition in cells at the base of the meristematic zone and was therefore too fast to be explained by a reduction in the rate at which cells reached mitosis because of slowing of growth; rather, stress must have acted more immediately on the enzyme. The operation of controls slowing the exit from the G1 and G2 phases is discussed. We suggest that a water-stress signal acts on Cdc2 kinase by increasing phosphorylation of tyrosine, causing a shift to the inhibited form and slowing cell production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphoenolpyruvate carboxylase (PEPC) activity and corresponding mRNA levels were investigated in developing and germinating wheat (Triticum aestivum) grains. During grain development PEPC activity increased to reach a maximum 15 d postanthesis. Western-blot experiments detected two main PEPC polypeptides with apparent molecular masses of 108 and 103 kD. The most abundant 103-kD PEPC subunit remained almost constant throughout the process of grain development and in the scutellum and aleurone layer of germinating grains. The less-abundant 108-kD polypeptide progressively disappeared during the second half of grain development and was newly synthesized in the scutellum and aleurone layer of germinating grains. PEPC mRNA was detected throughout the process of grain development; however, in germinating grains PEPC mRNA accumulated transiently in the scutellum and aleurone layer, showing a sharp maximum 24 h after imbibition. Immunolocalization studies revealed the presence of the enzyme in tissues with a high metabolic activity, as well as in the vascular tissue of the crease area of developing grains. A clear increase in PEPC was observed in the scutellar epithelium of grains 24 h after imbibition. The data suggest that the transiently formed PEPC mRNA in the scutellar epithelium encodes the 108-kD PEPC subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High Cd content in durum wheat (Triticum turgidum L. var durum) grain grown in the United States and Canada presents potential health and economic problems for consumers and growers. In an effort to understand the biological processes that result in excess Cd accumulation, root Cd uptake and xylem translocation to shoots in seedlings of bread wheat (Triticum aestivum L.) and durum wheat cultivars were studied. Whole-plant Cd accumulation was somewhat greater in the bread wheat cultivar, but this was probably because of increased apoplastic Cd binding. Concentration-dependent 109Cd2+-influx kinetics in both cultivars were characterized by smooth, nonsaturating curves that could be dissected into linear and saturable components. The saturable component likely represented carrier-mediated Cd influx across root-cell plasma membranes (Michaelis constant, 20–40 nm; maximum initial velocity, 26–29 nmol g−1 fresh weight h−1), whereas linear Cd uptake represented cell wall binding of 109Cd. Cd translocation to shoots was greater in the bread wheat cultivar than in the durum cultivar because a larger proportion of root-absorbed Cd moved to shoots. Our results indicate that excess Cd accumulation in durum wheat grain is not correlated with seedling-root influx rates or root-to-shoot translocation, but may be related to phloem-mediated Cd transport to the grain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of the ascorbate-glutathione cycle was investigated in roots of young wheat (Triticum aestivum L.) seedlings that were deprived of oxygen either by subjecting them to root hypoxia or to entire plant anoxia and then re-aerated. Although higher total levels of ascorbate and glutathione were observed under hypoxia, only the total amount of ascorbate was increased under anoxia. Under both treatments a significant increase in the reduced form of ascorbate and glutathione was found, resulting in increased reduction states. Upon the onset of re-aeration the ratios started to decline rapidly, indicating oxidative stress. Hypoxia caused higher activity of ascorbate peroxidase, whereas activities of monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase were diminished or only slightly influenced. Under anoxia, activities of ascorbate peroxidase and glutathione reductase decreased significantly to 39 and 62%, respectively. However, after re-aeration of hypoxically or anoxically pretreated roots, activity of enzymes approached the control levels. This corresponds with the restoration of the high reduction state of ascorbate and glutathione within 16 to 96 h of re-aeration, depending on the previous duration of anoxia. Apparently, anoxia followed by re-aeration more severely impairs entire plant metabolism compared with hypoxia, thus leading to decreased viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is a key atmospheric greenhouse gas that contributes to global climatic change through radiative warming and depletion of stratospheric ozone. In this report, N2O flux was monitored simultaneously with photosynthetic CO2 and O2 exchanges from intact canopies of 12 wheat seedlings. The rates of N2O-N emitted ranged from <2 pmol⋅m−2⋅s−1 when NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} was the N source, to 25.6 ± 1.7 pmol⋅m−2⋅s−1 (mean ± SE, n = 13) when the N source was shifted to NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document}. Such fluxes are among the smallest reported for any trace gas emitted by a higher plant. Leaf N2O emissions were correlated with leaf nitrate assimilation activity, as measured by using the assimilation quotient, the ratio of CO2 assimilated to O2 evolved. 15N isotopic signatures on N2O emitted from leaves supported direct N2O production by plant NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} assimilation and not N2O produced by microorganisms on root surfaces and emitted in the transpiration stream. In vitro production of N2O by both intact chloroplasts and nitrite reductase, but not by nitrate reductase, indicated that N2O produced by leaves occurred during photoassimilation of NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} in the chloroplast. Given the large quantities of NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} assimilated by plants in the terrestrial biosphere, these observations suggest that formation of N2O during NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} photoassimilation could be an important global biogenic N2O source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important determinant of wheat grain quality is the hardness of the grain. The trait is controlled by a major locus, Ha, on the short arm of chromosome 5D. Purified starch granules from soft-grained wheats have associated with them 15-kDa polypeptides called grain softness proteins (GSPs) or "friabilins." Genes that encode one family of closely related GSP polypeptides - GSP-1 genes - were mapped using chromosome substitution lines to the group 5 chromosomes. An F2 population segregating for hard and soft alleles at the Ha locus on a near-isogenic background was used in a single-seed study of the inheritance of grain softness and of GSP-1 alleles. Grain softness versus grain hardness was inherited in a 3:1 ratio. The presence versus absence of GSPs in single seed starch preparations was coinherited with grain softness versus hardness. This showed that grain softness is primarily determined by seed, and not by maternal, genotype. In addition, no recombination was detected in 44 F2 plants between GSP-1 restriction fragment length polymorphisms and Ha alleles. Differences between hard and soft wheat grains in membrane structure and lipid extractability have been described and, of the three characterized proteins that are part of the mixture of 15-kDa polypeptides called GSPs, at least two, and probably all three, are proteins that bind polar lipids. The data are interpreted to suggest that the Ha locus may encode one or more members of a large family of lipid-binding proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An entire gene encoding wheat (var. Hard Red Winter Tam 107) acetyl-CoA carboxylase [ACCase; acetyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1.2] has been cloned and sequenced. Comparison of the 12-kb genomic sequence with the 7.4-kb cDNA sequence reported previously revealed 29 introns. Within the coding region, the exon sequence is 98% identical to the known wheat cDNA sequence. A second ACCase gene was identified by sequencing fragments of genomic clones that include the first two exons and the first intron. Additional transcripts were detected by 5' and 3' RACE analysis (rapid amplification of cDNA ends). One set of transcripts had a 5' end sequence identical to the cDNA found previously and another set was identical to the gene reported here. The 3' RACE clones fall into four distinguishable sequence sets, bringing the number of ACCase sequences to six. None of these cDNA or genomic clones encodes a chloroplast targeting signal. Identification of six different sequences suggests that either the cytosolic ACCase genes are duplicated in the three chromosome sets in hexaploid wheat or that each of the six alleles of the cytosolic ACCase gene has a readily distinguishable DNA sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most allopolyploid plants, only homogenetic chromosome pairing occurs in meiosis, as a result of the recognition of genome differentiation by the genetic system regulating meiotic chromosome pairing. The nature of differentiation between chromosomes of closely related genomes is examined here by investigating recombination between wheat chromosome 1A and the closely related homoeologous chromosome 1Am of Triticum monococcum. The recognition of the differentiation between these chromosomes by the Ph1 locus, which prevents heterogenetic chromosome pairing in wheat, is also investigated. Chromosomes 1A and 1Am are shown to be colinear, and it is concluded that they are differentiated "substructurally." This substructural differentiation is argued to be recognized by the Ph1 locus. In the absence of Ph1, the distribution and frequencies of crossing over between the 1A and 1Am homoeologues were similar to the distribution and frequencies of crossing over between 1A homologues. The cytogenetic and evolutionary significance of these findings is discussed.