25 resultados para Visual Field


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Usher syndrome is a group of diseases with autosomal recessive inheritance, congenital hearing loss, and the development of retinitis pigmentosa, a progressive retinal degeneration characterized by night blindness and visual field loss over several decades. The causes of Usher syndrome are unknown and no animal models have been available for study. Four human gene sites have been reported, suggesting at least four separate forms of Usher syndrome. We report a mouse model of type I Usher syndrome, rd5, whose linkage on mouse chromosome 7 to Hbb and tub has homology to human Usher I reported on human chromosome 11p15. The electroretinogram in homozygous rd5/rd5 mouse is never normal with reduced amplitudes that extinguish by 6 months. Auditory-evoked response testing demonstrates increased hearing thresholds more than control at 3 weeks of about 30 decibels (dB) that worsen to about 45 dB by 6 months.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The visual stimuli that elicit neural activity differ for different retinal ganglion cells and these cells have been categorized by the visual information that they transmit. If specific visual information is conveyed exclusively or primarily by a particular set of ganglion cells, one might expect the cells to be organized spatially so that their sampling of information from the visual field is complete but not redundant. In other words, the laterally spreading dendrites of the ganglion cells should completely cover the retinal plane without gaps or significant overlap. The first evidence for this sort of arrangement, which has been called a tiling or tessellation, was for the two types of "alpha" ganglion cells in cat retina. Other reports of tiling by ganglion cells have been made subsequently. We have found evidence of a particularly rigorous tiling for the four types of ganglion cells in rabbit retina that convey information about the direction of retinal image motion (the ON-OFF direction-selective cells). Although individual cells in the four groups are morphologically indistinguishable, they are organized as four overlaid tilings, each tiling consisting of like-type cells that respond preferentially to a particular direction of retinal image motion. These observations lend support to the hypothesis that tiling is a general feature of the organization of information outflow from the retina and clearly implicate mechanisms for recognition of like-type cells and establishment of mutually acceptable territories during retinal development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sensory areas of adult cerebral cortex can reorganize in response to long-term alterations in patterns of afferent signals. This long-term plasticity is thought to play a crucial role in recovery from injury and in some forms of learning. However, the degree to which sensory representations in primary cortical areas depend on short-term (i.e., minute to minute) stimulus variations remains unclear. A traditional view is that each neuron in the mature cortex has a fixed receptive field structure. An alternative view, with fundamentally different implications for understanding cortical function, is that each cell's receptive field is highly malleable, changing according to the recent history of the sensory environment. Consistent with the latter view, it has been reported that selective stimulation of regions surrounding the receptive field induces a dramatic short-term increase in receptive field size for neurons in the visual cortex [Pettet, M. W. & Gilbert, C. D. (1992) Proc. Natl. Acad. Sci. USA 89, 8366-8370]. In contrast, we report here that there is no change in either the size or the internal structure of the receptive field following several minutes of surround stimulation. However, for some cells, overall responsiveness increases. These results suggest that dynamic alterations of receptive field structure do not underlie short-term plasticity in the mature primary visual cortex. However, some degree of short-term adaptability could be mediated by changes in responsiveness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cortical spreading depression (CSD) has been suggested to underlie migraine visual aura. However, it has been challenging to test this hypothesis in human cerebral cortex. Using high-field functional MRI with near-continuous recording during visual aura in three subjects, we observed blood oxygenation level-dependent (BOLD) signal changes that demonstrated at least eight characteristics of CSD, time-locked to percept/onset of the aura. Initially, a focal increase in BOLD signal (possibly reflecting vasodilation), developed within extrastriate cortex (area V3A). This BOLD change progressed contiguously and slowly (3.5 ± 1.1 mm/min) over occipital cortex, congruent with the retinotopy of the visual percept. Following the same retinotopic progression, the BOLD signal then diminished (possibly reflecting vasoconstriction after the initial vasodilation), as did the BOLD response to visual activation. During periods with no visual stimulation, but while the subject was experiencing scintillations, BOLD signal followed the retinotopic progression of the visual percept. These data strongly suggest that an electrophysiological event such as CSD generates the aura in human visual cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurons in primary visual cortex (area 17) respond vigorously to oriented stimuli within their receptive fields; however, stimuli presented outside the suprathreshold receptive field can also influence their responses. Here we describe a fundamental feature of the spatial interaction between suprathreshold center and subthreshold surround. By optical imaging of intrinsic signals in area 17 in response to a stimulus border, we show that a given stimulus generates activity primarily in iso-orientation domains, which extend for several millimeters across the cortical surface in a manner consistent with the architecture of long-range horizontal connections in area 17. By mapping the receptive fields of single neurons and imaging responses from the same cortex to stimuli that include or exclude the aggregate suprathreshold receptive field, we show that intrinsic signals strongly reveal the subthreshold surround contribution. Optical imaging and single-unit recording both demonstrate that the relative contrast of center and surround stimuli regulates whether surround interactions are facilitative or suppressive: the same surround stimulus facilitates responses when center contrast is low, but suppresses responses when center contrast is high. Such spatial interactions in area 17 are ideally suited to contribute to phenomena commonly regarded as part of "higher-level" visual processing, such as perceptual "popout" and "filling-in."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interactions between stimulus-induced oscillations (35-80 Hz) and stimulus-locked nonoscillatory responses were investigated in the visual cortex areas 17 and 18 of anaesthetized cats. A single square-wave luminance grating was used as a visual stimulus during simultaneous recordings from up to seven electrodes. The stimulus movement consisted of a superposition of a smooth movement with a sequence of dynamically changing accelerations. Responses of local groups of neurons at each electrode were studied on the basis of multiple unit activity and local slow field potentials (13-120 Hz). Oscillatory and stimulus-locked components were extracted from multiple unit activity and local slow field potentials and quantified by a combination of temporal and spectral correlation methods. We found fast stimulus-locked components primarily evoked by sudden stimulus accelerations, whereas oscillatory components (35-80 Hz) were induced during slow smooth movements. Oscillations were gradually reduced in amplitude and finally fully suppressed with increasing amplitudes of fast stimulus-locked components. It is argued that suppression of oscillations is necessary to prevent confusion during sequential processing of stationary and fast changing retinal images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When respiring rat liver mitochondria are incubated in the presence of Fe(III) gluconate, their DNA (mtDNA) relaxes from the supercoiled to the open circular form dependent on the iron dose. Anaerobiosis or antioxidants fail to completely inhibit the unwinding. High-resolution field-emission in-lens scanning electron microscopy imaging, in concert with backscattered electron detection, pinpoints nanometer-range iron colloids bound to mtDNA isolated from iron-exposed mitochondria. High-resolution field-emission in-lens scanning electron microscopy with backscattered electron detection imaging permits simultaneous detailed visual analysis of DNA topology, iron dose-dependent mtDNA unwinding, and assessment of iron colloid formation on mtDNA strands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recurrent theme in the organization of vertebrate visual cortex is that of receptive fields with an associated "silent" opponency component. In the middle temporal area (area MT), a cortical visual area involved in the analysis of retinal motion in primates, this opponency appears in the form of a region outside the classical receptive field (CRF) that in itself gives no response but suppresses responses to motion evoked within the CRF. This antagonistic motion surround has been described as very large and symmetrically arrayed around the CRF. On the basis of this view, the primary function of the surround has long been thought to consist of simple figure-ground segregation based on movement. We have made use of small stimulus patches to map the form and extent of the surround and find evidence that the surround inhibition of many MT cells is in fact confined to restricted regions on one side or on opposite sides of the CRF. Such regions endow MT cells with the ability to make local-to-local motion comparisons, capable of extracting more complex features from the visual environment, and as such, may be better viewed as intrinsic parts of the receptive field, rather than as separate entities responsible for local-to-global comparisons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When the visual (striate) cortex (V1) is damaged in human subjects, cortical blindness results in the contralateral visual half field. Nevertheless, under some experimental conditions, subjects demonstrate a capacity to make visual discriminations in the blind hemifield (blindsight), even though they have no phenomenal experience of seeing. This capacity must, therefore, be mediated by parallel projections to other brain areas. It is also the case that some subjects have conscious residual vision in response to fast moving stimuli or sudden changes in light flux level presented to the blind hemifield, characterized by a contentless kind of awareness, a feeling of something happening, albeit not normal seeing. The relationship between these two modes of discrimination has never been studied systematically. We examine, in the same experiment, both the unconscious discrimination and the conscious visual awareness of moving stimuli in a subject with unilateral damage to V1. The results demonstrate an excellent capacity to discriminate motion direction and orientation in the absence of acknowledged perceptual awareness. Discrimination of the stimulus parameters for acknowledged awareness apparently follows a different functional relationship with respect to stimulus speed, displacement, and stimulus contrast. As performance in the two modes can be quantitatively matched, the findings suggest that it should be possible to image brain activity and to identify the active areas involved in the same subject performing the same discrimination task, both with and without conscious awareness, and hence to determine whether any structures contribute uniquely to conscious perception.