39 resultados para Uterine Gland Hyperplasia
Resumo:
Herein we report the clinical, histopathological, and molecular features of a cancer syndrome with predisposition to uterine leiomyomas and papillary renal cell carcinoma. The studied kindred included 11 family members with uterine leiomyomas and two with uterine leiomyosarcoma. Seven individuals had a history of cutaneous nodules, two of which were confirmed to be cutaneous leiomyomatosis. The four kidney cancer cases occurred in young (33- to 48-year-old) females and displayed a unique natural history. All these kidney cancers displayed a distinct papillary histology and presented as unilateral solitary lesions that had metastasized at the time of diagnosis. Genetic-marker analysis mapped the predisposition gene to chromosome 1q. Losses of the normal chromosome 1q were observed in tumors that had occurred in the kindred, including a uterine leiomyoma. Moreover, the observed histological features were used as a tool to diagnose a second kindred displaying the phenotype. We have shown that predisposition to uterine leiomyomas and papillary renal cell cancer can be inherited dominantly through the hereditary leiomyomatosis and renal cell cancer (HLRCC) gene. The HLRCC gene maps to chromosome 1q and is likely to be a tumor suppressor. Clinical, histopathological, and molecular tools are now available for accurate detection and diagnosis of this cancer syndrome.
Resumo:
Tissue factor (TF), the initiator of blood coagulation and thrombosis, is up-regulated after vascular injury and in atherosclerotic states. Systemic administration of recombinant TF pathway inhibitor (TFPI) has been reported to decrease intimal hyperplasia after vascular injury and also to suppress systemic mechanisms of blood coagulation and thrombosis. Here we report that, in heritable hyperlipidemic Watanabe rabbits, adenoviral gene transfer of TFPI to balloon-injured atherosclerotic arteries reduced the extent of intimal hyperplasia by 43% (P < 0.05) compared with a control vector used at identical titer (1 × 1010 plaque-forming units/ml). Platelet aggregation and coagulation studies performed 7 days after local gene transfer of TFPI failed to show any impairment in systemic hemostasis. At time of sacrifice, 4 weeks after vascular injury, the 10 Ad-TFPI treated carotid arteries were free of thrombi, whereas two control-treated arteries were occluded (P, not significant). These findings suggest that TFPI overexpressed in atherosclerotic arteries can regulate hyperplastic response to injury in the absence of changes in the hemostatic system, establishing a role for local TF regulation as target for gene transfer-based antirestenosis therapies.
Resumo:
The nuclear factor-κB (NF-κB) family of transcription factors has been shown to regulate proliferation in several cell types. Although recent studies have demonstrated aberrant expression or activity of NF-κB in human breast cancer cell lines and tumors, little is known regarding the precise role of NF-κB in normal proliferation and development of the mammary epithelium. We investigated the function of NF-κB during murine early postnatal mammary gland development by observing the consequences of increased NF-κB activity in mouse mammary epithelium lacking the gene encoding IκBα, a major inhibitor of NF-κB. Mammary tissue containing epithelium from inhibitor κBα (IκBα)-deficient female donors was transplanted into the gland-free mammary stroma of wild-type mice, resulting in an increase in lateral ductal branching and pervasive intraductal hyperplasia. A two- to threefold increase in epithelial cell number was observed in IκBα-deficient epithelium compared with controls. Epithelial cell proliferation was strikingly increased in IκBα-deficient epithelium, and no alteration in apoptosis was detected. The extracellular matrix adjacent to IκBα-deficient epithelium was reduced. Consistent with in vivo data, a fourfold increase in epithelial branching was also observed in purified IκBα-deficient primary epithelial cells in three-dimensional culture. These data demonstrate that NF-κB positively regulates mammary epithelial proliferation, branching, and functions in maintenance of normal epithelial architecture during early postnatal development.
Resumo:
Two important features of amphibian metamorphosis are the sequential response of tissues to different concentrations of thyroid hormone (TH) and the development of the negative feedback loop between the pituitary and the thyroid gland that regulates TH synthesis by the thyroid gland. At the climax of metamorphosis in Xenopus laevis (when the TH level is highest), the ratio of the circulating precursor thyroxine (T4) to the active form 3,5,3′-triiodothyronine (T3) in the blood is many times higher than it is in tissues. This difference is because of the conversion of T4 to T3 in target cells of the tadpole catalyzed by the enzyme type II iodothyronine deiodinase (D2) and the local effect (cell autonomy) of this activity. Limb buds and tails express D2 early and late in metamorphosis, respectively, correlating with the time that these organs undergo TH-induced change. T3 is required to complete metamorphosis because the peak concentration of T4 that is reached at metamorphic climax cannot induce the final morphological changes. At the climax of metamorphosis, D2 expression is activated specifically in the anterior pituitary cells that express the genes for thyroid-stimulating hormone but not in the cells that express proopiomelanocortin. Physiological concentrations of T3 but not T4 can suppress thyrotropin subunit β gene expression. The timing and the remarkable specificity of D2 expression in the thyrotrophs of the anterior pituitary coupled with the requirement for locally synthesized T3 strongly support a role for D2 in the onset of the negative feedback loop at the climax of metamorphosis.
Resumo:
The active form of vitamin D, 1α,25-dihydroxyvitamin D [1α,25(OH)2D], is synthesized from its precursor 25 hydroxyvitamin D [25(OH)D] via the catalytic action of the 25(OH)D-1α-hydroxylase [1α(OH)ase] enzyme. Many roles in cell growth and differentiation have been attributed to 1,25(OH)2D, including a central role in calcium homeostasis and skeletal metabolism. To investigate the in vivo functions of 1,25(OH)2D and the molecular basis of its actions, we developed a mouse model deficient in 1α(OH)ase by targeted ablation of the hormone-binding and heme-binding domains of the 1α(OH)ase gene. After weaning, mice developed hypocalcemia, secondary hyperparathyroidism, retarded growth, and the skeletal abnormalities characteristic of rickets. These abnormalities are similar to those described in humans with the genetic disorder vitamin D dependent rickets type I [VDDR-I; also known as pseudovitamin D-deficiency rickets (PDDR)]. Altered non-collagenous matrix protein expression and reduced numbers of osteoclasts were also observed in bone. Female mutant mice were infertile and exhibited uterine hypoplasia and absent corpora lutea. Furthermore, histologically enlarged lymph nodes in the vicinity of the thyroid gland and a reduction in CD4- and CD8-positive peripheral T lymphocytes were observed. Alopecia, reported in vitamin D receptor (VDR)-deficient mice and in humans with VDDR-II, was not seen. The findings establish a critical role for the 1α(OH)ase enzyme in mineral and skeletal homeostasis as well as in female reproduction and also point to an important role in regulating immune function.
Resumo:
Maintenance of female reproductive competence depends on the actions of several hormones and signaling factors. Recent reports suggest roles for bone morphogenetic proteins (BMPs) in early stages of folliculogenesis. A role for the type I BMP receptor BmprIB as a regulator of ovulation rates in sheep has been described recently, but little is known about the roles of BMP signaling pathways in other aspects of reproductive function. We report here that BMPRIB is essential for multiple aspects of female fertility. Mice deficient in BmprIB exhibit irregular estrous cycles and an impaired pseudopregnancy response. BmprIB mutants produce oocytes that can be fertilized in vitro, but defects in cumulus expansion prevent fertilization in vivo. This defect is associated with decreased levels of aromatase production in granulosa cells. Unexpectedly, levels of mRNA for cyclooxygenase 2, an enzyme required for cumulus expansion, are increased. BmprIB mutants also exhibit a failure in endometrial gland formation. The expression of BmprIB in uterine linings suggests that these defects are a direct consequence of loss of BMP signaling in this tissue. In summary, these studies demonstrate the importance of BMP signaling pathways for estrus cyclicity, estradiol biosynthesis, and cumulus cell expansion in vivo and reveal sites of action for BMP signaling pathways in reproductive tissues.
Resumo:
Fluid and macromolecule secretion by submucosal glands in mammalian airways is believed to be important in normal airway physiology and in the pathophysiology of cystic fibrosis (CF). An in situ fluorescence method was applied to measure the ionic composition and viscosity of freshly secreted fluid from airway glands. Fragments of human large airways obtained at the time of lung transplantation were mounted in a humidified perfusion chamber and the mucosal surface was covered by a thin layer of oil. Individual droplets of secreted fluid were microinjected with fluorescent indicators for measurement of [Na+], [Cl−], and pH by ratio imaging fluorescence microscopy and viscosity by fluorescence recovery after photobleaching. After carbachol stimulation, 0.1–0.5 μl of fluid accumulated in spherical droplets at gland orifices in ≈3–5 min. In gland fluid from normal human airways, [Na+] was 94 ± 8 mM, [Cl−] was 92 ± 12 mM, and pH was 6.97 ± 0.06 (SE, n = 7 humans, more than five glands studied per sample). Apparent fluid viscosity was 2.7 ± 0.3-fold greater than that of saline. Neither [Na+] nor pH differed in gland fluid from CF airways, but viscosity was significantly elevated by ≈2-fold compared to normal airways. These results represent the first direct measurements of ionic composition and viscosity in uncontaminated human gland secretions and indicate similar [Na+], [Cl−], and pH to that in the airway surface liquid. The elevated gland fluid viscosity in CF may be an important factor promoting bacterial colonization and airway disease.
Resumo:
Leukemia inhibitory factor (LIF) expression in the uterus is essential for embryo implantation in mice. Here we describe the spatial and temporal regulation of LIF signaling in vivo by using tissues isolated from uteri on different days over the implantation period. During this time, LIF receptors are expressed predominantly in the luminal epithelium (LE) of the uterus. Isolated epithelium responds to LIF by phosphorylation and nuclear translocation of signal transducer and activator of transcription (Stat) 3, but not by an increase in mitogen-activated protein kinase levels. The related cytokines Il-6, ciliary neurotrophic factor, as well as epidermal growth factor, do not activate Stat3, although epidermal growth factor stimulates mitogen-activated protein kinase. In vivo Stat3 activation is induced by LIF alone, resulting in the localization of Stat3 specifically to the nuclei of the LE coinciding with the onset of uterine receptivity. The responsiveness of the LE to LIF is regulated temporally, with Stat activation being restricted to day 4 of pregnancy despite the presence of constant levels of LIF receptor throughout the preimplantation period. Uterine receptivity is therefore under dual control and is regulated by both the onset of LIF expression in the endometrial glands and the release from inhibition of receptor function in the LE.
Resumo:
Nocturnal melatonin production in the pineal gland is under the control of norepinephrine released from superior cervical ganglia afferents in a rhythmic manner, and of cyclic AMP. Cyclic AMP increases the expression of serotonin N-acetyltransferase and of inducible cAMP early repressor that undergo circadian oscillations crucial for the maintenance and regulation of the biological clock. In the present study, we demonstrate a circadian pattern of expression of the calcium/calmodulin activated adenylyl cyclase type 1 (AC1) mRNA in the rat pineal gland. In situ hybridization revealed that maximal AC1 mRNA expression occurred at midday (12:00-15:00), with a very low signal at night (0:00-3:00). We established that this rhythmic pattern was controlled by the noradrenergic innervation of the pineal gland and by the environmental light conditions. Finally, we observed a circadian responsiveness of the pineal AC activity to calcium/calmodulin, with a lag due to the processing of the protein. At midday, AC activity was inhibited by calcium (40%) either in the presence or absence of calmodulin, while at night the enzyme was markedly (3-fold) activated by the calcium-calmodulin complex. These findings suggest (i) the involvement of AC1 acting as the center of a gating mechanism, between cyclic AMP and calcium signals, important for the fine tuning of the pineal circadian rhythm; and (ii) a possible regulation of cyclic AMP on the expression of AC1 in the rat pineal gland.
Resumo:
The N,N'-diacetyllactosediamine (lacdiNAc) pathway of complex-type oligosaccharide synthesis is controlled by a UDP-GalNAc:GlcNAc beta-R beta 1-->4-N-acetylgalac-tesaminyltransferase (beta 4-GalNAcT) that acts analogously to the common UDP-Gal:GlcNAc beta-R beta 1-->4-galactosyltransferase (beta 4-GalT). LacdiNAc-based chains particularly occur in invertebrates and cognate beta 4-GalNAcTs have been identified in the snail Lymnaea stagnalis, in two schistosomal species, and in several lepldopteran insect cell lines. Because of the similarity in reactions catalyzed by both enzymes, we investigated whether L. stagnalis albumen gland beta 4-GalNAcT would share with mammalian beta 4-GalT the property of interacting with alpha-lactalbumin (alpha-LA), a protein that only occurs in the lactating mammary gland, to form a complex in which the specificity of the enzyme is changed. It was found that, under conditions where beta 4-GalT forms the lactose synthase complex with alpha-LA, the snail beta 4-GalNAcT was induced by this protein to act on Glc with a > 100-fold increased efficiency, resulting in the formation of the lactose analog GalNAc beta 1-->4Glc. This forms the second example of a glycosyltransferase, the specificity of which can be altered by a modifier protein. So far, however, no protein fraction could be isolated from L. stagnalis that could likewise interact with the beta 4-GalNAcT. Neither had lysozyme c, a protein that is homologous to alpha-LA, an effect on the specificity of the enzyme. These results raise the question of how the capability to interact with alpha-LA has been conserved in the snail enzyme during evolution without any apparent selective pressure. They also suggest that snail beta 4-GalNAcT and mammalian beta 4-GalT show similarity at a molecular level and allows the identification of the beta 4-GalNAcT as a candidate member of the beta 4-GalT family.
Resumo:
Development of the nematode egg-laying system requires the formation of a connection between the uterine lumen and the developing vulval lumen, thus allowing a passage for eggs and sperm. This relatively simple process serves as a model for certain aspects of organogenesis. Such a connection demands that cells in both tissues become specialized to participate in the connection, and that the specialized cells are brought in register. A single cell, the anchor cell, acts to induce and to organize specialization of the epidermal and uterine epithelia, and registrates these tissues. The inductions act via evolutionarily conserved intercellular signaling pathways. The anchor cell induces the vulva from ventral epithelial cells via the LIN-3 growth factor and LET-23 transmembrane tyrosine kinase. It then induces surrounding uterine intermediate precursors via the receptor LIN-12, a founding member of the Notch family of receptors. Both signaling pathways are used multiple times during development of Caenorhabditis elegans. The outcome of the signaling is context-dependent. Both inductions are reciprocated. After the anchor cell has induced the vulva, it stretches toward the induced vulval cells. After the anchor cell has induced specialized uterine intermediate precursor cells, it fuses with a subset of their progeny.
Resumo:
The neuronal nicotinic synapse in tissue slices of the adrenal medulla was studied with whole-cell patch-clamp. Excitatory postsynaptic currents (EPSCs) were evoked by local field stimulation or occurred spontaneously especially when external [K+] was increased. EPSCs were carried by channels sharing biophysical and pharmacological properties of neuronal-type nicotinic receptors (nAChRs). A single-channel conductance (gamma) of 43-45 pS was found from nonstationary variance analysis of EPSCs. Spontaneous EPSCs were tetrodotoxin-insensitive and Ca(2+)-dependent and occurred in burst-like clusters. Quantal analysis of spontaneous EPSCs gave a quantal size of 20 pA and amplitude histograms were well described by binomial models with low values of quantal content, consistent with a small number of spontaneously active release sites. However, rare large amplitude EPSCs suggest that the total number of sites is higher and that extrajunctional receptors are involved. Our estimates of quantal content and size at the chromaffin cell neuronal nicotinic synapse may be useful in characterizing central neuronal-type nicotinic receptor-mediated cholinergic synaptic transmission.
Resumo:
To study the involvement of cyclin D1 in epithelial growth and differentiation and its putative role as an oncogene in skin, transgenic mice were developed carrying the human cyclin D1 gene driven by a bovine keratin 5 promoter. As expected, all squamous epithelia including skin, oral mucosa, trachea, vaginal epithelium, and the epithelial compartment of the thymus expressed aberrant levels of cyclin D1. The rate of epidermal proliferation increased dramatically in transgenic mice, which also showed basal cell hyperplasia. However, epidermal differentiation was unaffected, as shown by normal growth arrest of newborn primary keratinocytes in response to high extracellular calcium. Moreover, an unexpected phenotype was observed in the thymus. Transgenic mice developed a severe thymic hyperplasia that caused premature death due to cardio-respiratory failure within 4 months of age. By 14 weeks, the thymi of transgenic mice increased in weight up to 40-fold, representing 10% of total body weight. The hyperplastic thymi had normal histology revealing a well-differentiated cortex and medulla, which supported an apparently normal T-cell developmental program based on the distribution of thymocyte subsets. These results suggest that proliferation and differentiation of epithelial cells are under independent genetic controls in these organs and that cyclin D1 can modulate epithelial proliferation without altering the initiation of differentiation programs. No spontaneous development of epithelial tumors or thymic lymphomas was perceived in transgenic mice during their first 8 months of life, although they continue under observation. This model provides in vivo evidence of the action of cyclin D1 as a pure mediator of proliferation in epithelial cells.