58 resultados para Unique Pathogenesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The androgen receptor (AR) binds to androgen response elements and regulates target genes via a mechanism involving coregulators. Here we demonstrate that the AR can interact with the testicular orphan receptor-4 (TR4) and function as a repressor to down-regulate the TR4 target genes by preventing the TR4 binding to its target DNA. Interestingly, the heterodimerization of AR and TR4 also allows TR4 to repress AR target gene expression. Simultaneous exposure to both receptors therefore could result in bidirectional suppression of their target genes. Together, these data demonstrate that the coupling of two different receptors, through the heterodimerization of AR and TR4, is a unique signaling pathway in the steroid receptor superfamily, which may facilitate further understanding of the complicated androgen action in prostate cancer or libido.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytosolic and peroxisomal enzymes necessary for methanol assimilation are synthesized when Pichia pastoris is grown in methanol. Upon adaptation from methanol to a glucose environment, these enzymes are rapidly and selectively sequestered and degraded within the yeast vacuole. Sequestration begins when the vacuole changes shape and surrounds the peroxisomes. The opposing membranes then fuse, engulfing the peroxisome. In this study, we have characterized a mutant cell line (glucose-induced selective autophagy), gsa7, which is defective in glucose-induced selective autophagy of peroxisomes, and have identified the GSA7 gene. Upon glucose adaptation, gsa7 cells were unable to degrade peroxisomal alcohol oxidase. We observed that the peroxisomes were surrounded by the vacuole, but complete uptake into the vacuole did not occur. Therefore, we propose that GSA7 is not required for initiation of autophagy but is required for bringing the opposing vacuolar membranes together for homotypic fusion, thereby completing peroxisome sequestration. By sequencing the genomic DNA fragment that complemented the gsa7 phenotype, we have found that GSA7 encodes a protein of 71 kDa (Gsa7p) with limited sequence homology to a family of ubiquitin-activating enzymes, E1. The knockout mutant gsa7Δ had an identical phenotype to gsa7, and both mutants were rescued by an epitope-tagged Gsa7p (Gsa7-hemagglutinin [HA]). In addition, a GSA7 homolog, APG7, a protein required for autophagy in Saccharomyces cerevisiae, was capable of rescuing gsa7. We have sequenced the human homolog of GSA7 and have shown many regions of identity between the yeast and human proteins. Two of these regions align to the putative ATP-binding domain and catalytic site of the family of ubiquitin activating enzymes, E1 (UBA1, UBA2, and UBA3). When either of these sites was mutated, the resulting mutants [Gsa7(ΔATP)-HA and Gsa7(C518S)-HA] were unable to rescue gsa7 cells. We provide evidence to suggest that Gsa7-HA formed a thio-ester linkage with a 25–30 kDa protein. This conjugate was not observed in cells expressing Gsa7(ΔATP)-HA or in cells expressing Gsa7(C518S)-HA. Our results suggest that this unique E1-like enzyme is required for homotypic membrane fusion, a late event in the sequestration of peroxisomes by the vacuole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endosperm of a sorghum mutant cultivar, with high in vitro uncooked and cooked protein digestibilities, was examined by transmission electron microscopy and α-, β-, and γ-kafirins (storage proteins) were localized within its protein bodies. Transmission electron microscopy micrographs revealed that these protein bodies had a unique microstructure related to high protein digestibility. They were irregular in shape and had numerous invaginations, often reaching to the central area of the protein body. Protein bodies from normal cultivars, such as P721N studied here, with much lower uncooked and cooked digestibilities are spherical and contain no invaginations. Immunocytochemistry results showed that the relative location of α- and β-kafirins within the protein bodies of the highly digestible genotype were similar to the normal cultivar, P721N. γ-Kafirin, however, was concentrated in dark-staining regions at the base of the folds instead of at the protein body periphery, as is typical of normal cultivars. The resulting easy accessibility of digestive enzymes to α-kafirin, the major storage protein, in addition to the increased surface area of the protein bodies of the highly digestible cultivar appear to account for its high in vitro protein digestibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural killer T (NKT) cells constitute a distinct subpopulation of T cells with a unique antigen specificity, prompt effector functions, and an unusual tissue distribution. NKT cells are especially abundant in the liver, but their physiological function in this organ remains unclear. In the present study, we examined the possible contribution of NKT cells to a murine model of hepatitis induced by i.v. injection of Con A. CD1-deficient mice lacking NKT cells were highly resistant to Con A-induced hepatitis. Adoptive transfer of hepatic NKT cells isolated from wild-type mice, but not from FasL-deficient gld mice, sensitized CD1-deficient mice to Con A-induced hepatitis. Furthermore, adoptive transfer of hepatic mononuclear cells from wild-type mice, but not from CD1-deficient mice, sensitized gld mice to Con A-induced hepatitis. Upon Con A administration, hepatic NKT cells rapidly up-regulated cell surface FasL expression and FasL-mediated cytotoxicity. At the same time, NKT cells underwent apoptosis leading to their rapid disappearance in the liver. These results implicated FasL expression on liver NKT cells in the pathogenesis of Con A-induced hepatitis, suggesting a similar pathogenic role in human liver diseases such as autoimmune hepatitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many Gram-positive bacteria covalently tether their surface adhesins to the cell wall peptidoglycan. We find that surface proteins of Staphylococcus aureus are linked to the cell wall by sortase, an enzyme that cleaves polypeptides at a conserved LPXTG motif. S. aureus mutants lacking sortase fail to process and display surface proteins and are defective in the establishment of infections. Thus, the cell wall envelope of Gram-positive bacteria represents a surface organelle responsible for interactions with the host environment during the pathogenesis of bacterial infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leishmania are parasites that survive within macrophages by mechanism(s) not entirely known. Depression of cellular immunity and diminished production of interleukin 1β (IL-1β) and tumor necrosis factor α are potential ways by which the parasite survives within macrophages. We examined the mechanism(s) by which lipophosphoglycan (LPG), a major glycolipid of Leishmania, perturbs cytokine gene expression. LPG treatment of THP-1 monocytes suppressed endotoxin induction of IL-1β steady-state mRNA by greater than 90%, while having no effect on the expression of a control gene. The addition of LPG 2 h before or 2 h after endotoxin challenge significantly suppressed steady-state IL-1β mRNA by 90% and 70%, respectively. LPG also inhibited tumor necrosis factor α and Staphylococcus induction of IL-1β gene expression. The inhibitory effect of LPG is agonist-specific because LPG did not suppress the induction of IL-1β mRNA by phorbol 12-myristate 13-acetate. A unique DNA sequence located within the −310 to −57 nucleotide region of the IL-1β promoter was found to mediate LPG’s inhibitory activity. The requirement for the −310 to −57 promoter gene sequence for LPG’s effect is demonstrated by the abrogation of LPG’s inhibitory activity by truncation or deletion of the −310 to −57 promoter gene sequence. Furthermore, the minimal IL-1β promoter (positions −310 to +15) mediated LPG’s inhibitory activity with dose and kinetic profiles that were similar to LPG’s suppression of steady-state IL-1β mRNA. These findings delineated a promoter gene sequence that responds to LPG to act as a “gene silencer,” a function, to our knowledge, not previously described. LPG’s inhibitory activity for several mediators of inflammation and the persistence of significant inhibitory activity 2 h after endotoxin challenge suggest that LPG has therapeutic potential and may be exploited for therapy of sepsis, acute respiratory distress syndrome, and autoimmune diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

β2-Microglobulin-deficient (β2m−) mice generate a CD4+ major histocompatibility complex class II-restricted cytotoxic T-lymphocyte (CTL) response following infection with lymphocytic choriomeningitis (LCM) virus (LCMV). We have determined the cytotoxic mechanism used by these CD4+ CTLs and have examined the role of this cytotoxic activity in pathogenesis of LCM disease in β2m− mice. Lysis of LCMV-infected target cells by CTLs from β2m− mice is inhibited by addition of soluble Fas-Ig fusion proteins or by pretreatment of the CTLs with the protein synthesis inhibitor emetine. In addition, LCMV-infected cell lines that are resistant to anti-Fas-induced apoptosis are refractory to lysis by these virus-specific CD4+ CTLs. These data indicate that LCMV-specific CD4+ CTLs from β2m− mice use a Fas-dependent lytic mechanism. Intracranial (i.c.) infection of β2m− mice with LCMV results in loss of body weight. Fas-deficient β2m−.lpr mice develop a similar wasting disease following i.c. infection. This suggests that Fas-dependent cytotoxicity is not required for LCMV-induced weight loss. A potential mediator of this chronic wasting disease is tumor necrosis factor (TNF)-α, which is produced by LCMV-specific CD4+ CTLs. In contrast to LCMV-induced weight loss, lethal LCM disease in β2m− mice is dependent on Fas-mediated cytotoxicity. Transfer of immune splenocytes from LCMV-infected β2m− mice into irradiated infected β2m− mice results in death of recipient animals. In contrast, transfer of these splenocytes into irradiated infected β2m−.lpr mice does not cause death. Thus a role for CD4+ T-cell-mediated cytotoxicity in virus-induced immunopathology has now been demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We identified a viral IL-10 homolog encoded by an ORF (UL111a) within the human cytomegalovirus (CMV) genome, which we designated cmvIL-10. cmvIL-10 can bind to the human IL-10 receptor and can compete with human IL-10 for binding sites, despite the fact that these two proteins are only 27% identical. cmvIL-10 requires both subunits of the IL-10 receptor complex to induce signal transduction events and biological activities. The structure of the cmvIL-10 gene is unique by itself. The gene retained two of four introns of the IL-10 gene, but the length of the introns was reduced. We demonstrated that cmvIL-10 is expressed in CMV-infected cells. Thus, expression of cmvIL-10 extends the range of counter measures developed by CMV to circumvent detection and destruction by the host immune system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma processing is a standard industrial method for the modification of material surfaces and the deposition of thin films. Polyatomic ions and neutrals larger than a triatomic play a critical role in plasma-induced surface chemistry, especially in the deposition of polymeric films from fluorocarbon plasmas. In this paper, low energy CF3+ and C3F5+ ions are used to modify a polystyrene surface. Experimental and computational studies are combined to quantify the effect of the unique chemistry and structure of the incident ions on the result of ion-polymer collisions. C3F5+ ions are more effective at growing films than CF3+, both at similar energy/atom of ≈6 eV/atom and similar total kinetic energies of 25 and 50 eV. The composition of the films grown experimentally also varies with both the structure and kinetic energy of the incident ion. Both C3F5+ and CF3+ should be thought of as covalently bound polyatomic precursors or fragments that can react and become incorporated within the polystyrene surface, rather than merely donating F atoms. The size and structure of the ions affect polymer film formation via differing chemical structure, reactivity, sticking probabilities, and energy transfer to the surface. The different reactivity of these two ions with the polymer surface supports the argument that larger species contribute to the deposition of polymeric films from fluorocarbon plasmas. These results indicate that complete understanding and accurate computer modeling of plasma–surface modification requires accurate measurement of the identities, number densities, and kinetic energies of higher mass ions and energetic neutrals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meiotic lamin C2 is the only A-type lamin expressed during mammalian spermatogenesis. Typical for this short lamin is the unique hexapeptide GNAEGR, which substitutes the nonhelical amino terminus and part of the α-helical rod domain present in somatic lamins. Meiotic lamin C2 also lacks a carboxyl-terminal CaaX box, which is modified by isoprenylation and involved in nuclear envelope (NE) association of somatic isoforms. The mechanism by which lamin C2 becomes localized in the NE is totally unknown. Here we demonstrate that the hexapeptide GNAEGR is essential for this process: (i) Its deletion resulted in a diffuse distribution of lamin C2 within nuclei of transfected COS-7 cells; (ii) Mutated somatic lamin C, containing the sequence GNAEGR at its amino terminus, was located at the NE. The mass spectrometric analysis of the amino terminus of lamin C2 revealed that it is modified by myristoylation. Correspondingly, the substitution of the first glycine residue abolishes the NE association of lamin C2. We conclude that NE association of lamin C2 is achieved by a mechanism different from that of somatic lamins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell death is mediated by distinct pathways including apoptosis and oncosis in response to various death signals. To characterize molecules involved in cell death, a panel of mAbs was raised by immunizing mice with apoptotic cells. One of these antibodies, designated anti-Porimin (for pro-oncosis receptor inducing membrane injury), was found to directly induce a unique type of cell death in Jurkat cells. Anti-Porimin defines a 110-kDa cell surface receptor on Jurkat cells. Functionally, anti-Porimin alone rapidly mediates pore formation on the plasma membrane and induces cell death without participation of complement. Both the cellular expression and functional characteristics of the Porimin antigen indicate that it is distinct from the CD95 (Fas/Apo-1) and other cell receptors known to induce apoptosis. Anti-Porimin-mediated cell death was preceded by cell aggregation, formation of plasma membrane pores, and the appearance of membrane blebs. More important, these cells show neither DNA fragmentation nor apoptotic bodies, but display lethal damage of the cell membrane. Cell death by anti-Porimin is distinct from complement-dependent cytolysis or complement-independent apoptosis but is similar to that described for oncosis, a form of cell death accompanied by the membrane damage followed by karyolysis. The induction of cell death by anti-Porimin may represent a unique cell surface receptor-mediated pathway of cell death in the human lymphoid system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of oleamide, an amidated lipid isolated from the cerebrospinal fluid of sleep-deprived cats, on serotonin receptor-mediated responses were investigated in cultured mammalian cells. In rat P11 cells, which endogenously express the 5-hydroxytryptamine2A (5HT2A) receptor, oleamide significantly potentiated 5HT-induced phosphoinositide hydrolysis. In HeLa cells expressing the 5HT7 receptor subtype, oleamide caused a concentration-dependent increase in cAMP accumulation but with lower efficacy than that observed by 5HT. This effect was not observed in untransfected HeLa cells. Clozapine did not prevent the increase in cAMP elicited by oleamide, and ketanserin caused an ≈65% decrease. In the presence of 5HT, oleamide had the opposite effect on cAMP, causing insurmountable antagonism of the concentration-effect curve to 5HT, but had no effect on cAMP levels elicited by isoproterenol or forskolin. These results indicate that oleamide can modulate 5HT-mediated signal transduction at different subtypes of mammalian 5HT receptors. Additionally, our data indicate that oleamide acts at an apparent allosteric site on the 5HT7 receptor and elicits functional responses via activation of this site. This represents a unique mechanism of activation for 5HT G protein-coupled receptors and suggests that G protein-coupled neurotransmitter receptors may act like their iontropic counterparts (i.e., γ-aminobutyric acid type A receptors) in that there may be several binding sites on the receptor that regulate functional activity with varying efficacies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Huntington's disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the protein huntingtin (htt). Pathogenesis in HD appears to involve the formation of ubiquitinated neuronal intranuclear inclusions containing N-terminal mutated htt, abnormal protein interactions, and the aggregate sequestration of a variety of proteins (noticeably, transcription factors). To identify novel htt-interacting proteins in a simple model system, we used a yeast two-hybrid screen with a Caenorhabditis elegans activation domain library. We found a predicted WW domain protein (ZK1127.9) that interacts with N-terminal fragments of htt in two-hybrid tests. A human homologue of ZK1127.9 is CA150, a transcriptional coactivator with a N-terminal insertion that contains an imperfect (Gln-Ala)38 tract encoded by a polymorphic repeat DNA. CA150 interacted in vitro with full-length htt from lymphoblastoid cells. The expression of CA150, measured immunohistochemically, was markedly increased in human HD brain tissue compared with normal age-matched human brain tissue, and CA150 showed aggregate formation with partial colocalization to ubiquitin-positive aggregates. In 432 HD patients, the CA150 repeat length explains a small, but statistically significant, amount of the variability in the onset age. Our data suggest that abnormal expression of CA150, mediated by interaction with polyglutamine-expanded htt, may alter transcription and have a role in HD pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type II restriction endonuclease designated OliI has been partially purified from the halophilic bacterium Oceanospirillum linum 4-5D. OliI recognizes the interrupted hexanucleotide palindrome 5′-CACNN↓NNGTG-3′ and cleaves it in the center generating blunt-ended DNA fragments.