35 resultados para Ultracompact Dwarf Galaxies
Resumo:
The history and the ultimate future fate of the universe as a whole depend on how much the expansion of the universe is decelerated by its own mass. In particular, whether the expansion of the universe will ever come to a halt can be determined from the past expansion. However, the mass density in the universe does not only govern the expansion history and the curvature of space, but in parallel also regulates the growth of hierarchical structure, including the collapse of material into the dense, virialized regions that we identify with galaxies. Hence, the formation of galaxies and their clustered distribution in space depend not only on the detailed physics of how stars are formed but also on the overall structure of the universe. Recent observational efforts, fueled by new large, ground-based telescopes and the Hubble Space Telescope, combined with theoretical progress, have brought us to the verge of determining the expansion history of the universe and space curvature from direct observation and to linking this to the formation history of galaxies.
Resumo:
Extremely strong observational evidence has recently been found for the presence of black holes orbiting a few relatively normal stars in our Milky Way Galaxy and also at the centers of some galaxies. The former generally have masses of 4–16 times the mass of the sun, whereas the latter are “supermassive black holes” with millions to billions of solar masses. The evidence for a supermassive black hole in the center of our galaxy is especially strong.
Resumo:
Until the mid-1990s a person could not point to any celestial object and say with assurance that “here is a brown dwarf.” Now dozens are known, and the study of brown dwarfs has come of age, touching upon major issues in astrophysics, including the nature of dark matter, the properties of substellar objects, and the origin of binary stars and planetary systems.
Resumo:
The determination of the three-dimensional layout of galaxies is critical to our understanding of the evolution of galaxies and the structures in which they lie, to our determination of the fundamental parameters of cosmology, and to our understanding of both the past and future histories of the universe at large. The mapping of the large scale structure in the universe via the determination of galaxy red shifts (Doppler shifts) is a rapidly growing industry thanks to technological developments in detectors and spectrometers at radio and optical wavelengths. First-order application of the red shift-distance relation (Hubble’s law) allows the analysis of the large-scale distribution of galaxies on scales of hundreds of megaparsecs. Locally, the large-scale structure is very complex but the overall topology is not yet clear. Comparison of the observed red shifts with ones expected on the basis of other distance estimates allows mapping of the gravitational field and the underlying total density distribution. The next decade holds great promise for our understanding of the character of large-scale structure and its origin.
Resumo:
An overview is presented of the current situation regarding radioactive dating of the matter of which our Galaxy is comprised. A firm lower bound on the age from nuclear chronometers of ≈9–10 Gyr is entirely consistent with age determinations from globular clusters and white dwarf cooling histories. The reasonable assumption of an approximately uniform nucleosynthesis rate yields an age for the Galaxy of 12.8 ± 3 Gyr, which again is consistent with current determinations from other methods.
Resumo:
It is argued that within the standard Big Bang cosmological model the bulk of the mass of the luminous parts of the large galaxies likely had been assembled by redshift z ∼ 10. Galaxy assembly this early would be difficult to fit in the widely discussed adiabatic cold dark matter model for structure formation, but it could agree with an isocurvature version in which the cold dark matter is the remnant of a massive scalar field frozen (or squeezed) from quantum fluctuations during inflation. The squeezed field fluctuations would be Gaussian with zero mean, and the distribution of the field mass therefore would be the square of a random Gaussian process. This offers a possibly interesting new direction for the numerical exploration of models for cosmic structure formation.
Resumo:
We review the current status of our knowledge of cosmic velocity fields, on both small and large scales. A new statistic is described that characterizes the incoherent, thermal component of the velocity field on scales less than 2h−1 Mpc (h is H0/100 km·s−1·Mpc−1, where H0 is the Hubble constant and 1 Mpc = 3.09 × 1022 m) and smaller. The derived velocity is found to be quite stable across different catalogs and is of remarkably low amplitude, consistent with an effective Ω ∼ 0.15 on this scale. We advocate the use of this statistic as a standard diagnostic of the small-scale kinetic energy of the galaxy distribution. The analysis of large-scale flows probes the velocity field on scales of 10–60 h−1 Mpc and should be adequately described by linear perturbation theory. Recent work has focused on the comparison of gravity or density fields derived from whole-sky redshift surveys of galaxies [e.g., the Infrared Astronomical Satellite (IRAS)] with velocity fields derived from a variety of sources. All the algorithms that directly compare the gravity and velocity fields suggest low values of the density parameter, while the POTENT analysis, using the same data but comparing the derived IRAS galaxy density field with the Mark-III derived matter density field, leads to much higher estimates of the inferred density. Since the IRAS and Mark-III fields are not fully consistent with each other, the present discrepancies might result from the very different weighting applied to the data in the competing methods.
Resumo:
Establishing accurate extragalactic distances has provided an immense challenge to astronomers since the 1920s. The situation has improved dramatically as better detectors have become available, and as several new, promising techniques have been developed. For the first time in the history of this difficult field, relative distances to galaxies are being compared on a case-by-case basis, and their quantitative agreement is being established. New instrumentation, the development of new techniques for measuring distances, and recent measurements with the Hubble Space telescope all have resulted in new distances to galaxies with precision at the ±5–20% level. The current statistical uncertainty in some methods for measuring H0 is now only a few percent; with systematic errors, the total uncertainty is approaching ±10%. Hence, the historical factor-of-two uncertainty in the value of the H0 is now behind us.
Resumo:
Single-gene mutations that extend lifespan provide valuable tools for the exploration of the molecular basis for age-related changes in cell and tissue function and for the pathophysiology of age-dependent diseases. We show here that mice homozygous for loss-of-function mutations at the Pit1 (Snell dwarf) locus show a >40% increase in mean and maximal longevity on the relatively long-lived (C3H/HeJ × DW/J)F1 background. Mutant dwJ/dw animals show delays in age-dependent collagen cross-linking and in six age-sensitive indices of immune system status. These findings thus demonstrate that a single gene can control maximum lifespan and the timing of both cellular and extracellular senescence in a mammal. Pituitary transplantation into dwarf mice does not reverse the lifespan effect, suggesting that the effect is not due to lowered prolactin levels. In contrast, homozygosity for the Ghrhrlit mutation, which like the Pit1dw mutation lowers plasma growth hormone levels, does lead to a significant increase in longevity. Male Snell dwarf mice, unlike calorically restricted mice, become obese and exhibit proportionately high leptin levels in old age, showing that their exceptional longevity is not simply due to alterations in adiposity per se. Further studies of the Pit1dw mutant, and the closely related, long-lived Prop-1df (Ames dwarf) mutant, should provide new insights into the hormonal regulation of senescence, longevity, and late life disease.
Resumo:
Astrophysical objects, ranging from meteorites to the entire universe, can be classified into about a dozen characteristic morphologies, at least as seen by a blurry eye. Some patterns exist over an enormously wide range of distance scales, apparently as a result of similar underlying physics. Bipolar ejection from protostars, binary systems, and active galaxies is perhaps the clearest example. The oral presentation included about 130 astronomical images which cannot be reproduced here.
Resumo:
The ga2 mutant of Arabidopsis thaliana is a gibberellin-deficient dwarf. Previous biochemical studies have suggested that the ga2 mutant is impaired in the conversion of copalyl diphosphate to ent-kaurene, which is catalyzed by ent-kaurene synthase (KS). Overexpression of the previously isolated KS cDNA from pumpkin (Cucurbita maxima) (CmKS) in the ga2 mutant was able to complement the mutant phenotype. A genomic clone coding for KS, AtKS, was isolated from A. thaliana using CmKS cDNA as a heterologous probe. The corresponding A. thaliana cDNA was isolated and expressed in Escherichia coli as a fusion protein. The fusion protein showed enzymatic activity that converted [3H]copalyl diphosphate to [3H]ent-kaurene. The recombinant AtKS protein derived from the ga2–1 mutant is truncated by 14 kD at the C-terminal end and does not contain significant KS activity in vitro. Sequence analysis revealed that a C-2099 to T base substitution, which converts Gln-678 codon to a stop codon, is present in the AtKS cDNA from the ga2–1 mutant. Taken together, our results show that the GA2 locus encodes KS.
Resumo:
Retinoblastoma (RB-1) is a tumor suppressor gene that encodes a 105-kDa nuclear phosphoprotein. To date, RB genes have been isolated only from metazoans. We have isolated a cDNA from maize endosperm whose predicted protein product (ZmRb) shows homology to the "pocket" A and B domains of the Rb protein family. We found ZmRb behaves as a pocket protein based on its ability to specifically interact with oncoproteins encoded by DNA tumor viruses (E7, T-Ag, E1A). ZmRb can interact in vitro and in vivo with the replication-associated protein, RepA, encoded by the wheat dwarf virus. The maize Rb-related protein undergoes changes in level and phosphorylation state concomitant with endoreduplication, and it is phosphorylated in vitro by an S-phase kinase from endoreduplicating endosperm cells. Together, our results suggest that ZmRb is a representative of the pocket protein family and may play a role in cell cycle progression. Moreover, certain plant monopartite geminiviruses may operate similarly to mammalian DNA viruses, by targeting and inactivating the retinoblastoma protein, which otherwise induces G1 arrest.
Resumo:
We report new evidence that bears decisively on a long-standing controversy in primate systematics. DNA sequence data for the complete cytochrome b gene, combined with an expanded morphological data set, confirm the results of a previous study and again indicate that all extant Malagasy lemurs originated from a single common ancestor. These results, as well as those from other genetic studies, call for a revision of primate classifications in which the dwarf and mouse lemurs are placed within the Afro-Asian lorisiforms. The phylogenetic results, in agreement with paleocontinental data, indicate an African origin for the common ancestor of lemurs and lorises (the Strepsirrhini). The molecular data further suggest the surprising conclusion that lemurs began evolving independently by the early Eocene at the latest. This indicates that the Malagasy primate lineage is more ancient than generally thought and places the split between the two strepsirrhine lineages well before the appearance of known Eocene fossil primates. We conclude that primate origins were marked by rapid speciation and diversification sometime before the late Paleocene.
Resumo:
Very-long-baseline radio interferometry images of the nuclear region of the nearby spiral galaxy M81 reveal the most compact galactic core outside the Galaxy of which the size has been determined: 700 x 300 astronomical units (AU). The observations exclude a starburst or supernova interpretation for the core. Instead they favor an active galactic nucleus. There is evidence for a northeastern jet bent by approximately 35 degrees over a length scale from 700 to 4000 AU. The jet is, on average, directed toward an extended emission region, probably a radio lobe, about 1 kiloparsec (kpc) away from the core. A corresponding emission region was found in the southwest at a distance of only 30 pc from the core. The observed jet is extremely stable and likely to be associated with a steady-state channel. There is no detectable motion along the jet beyond the nominal value of -60 +/- 60 km.s-1. The level of activities in the core region of M81 is intermediate between that of SgrA* and that of powerful radio galaxies and quasars.
Resumo:
Predictions for the apparent velocity statistics under simple beaming models are presented and compared to the observations. The potential applications for tests of unification models and for cosmology (source counts, measurements of the Hubble constant H0 and the deceleration parameter q0) are discussed. First results from a large homogeneous survey are presented. The data do not show compelling evidence for the existence of intrinsically different populations of galaxies, BL Lacertae objects, or quasars. Apparent velocities betaapp in the range 1-5 h-1, where h = H0/100 km.s-1.Mpc-1 [1 megaparsec (Mpc) = 3.09 x 10(22) m], occur with roughly equal frequency; higher values, up to betaapp = 10 h-1, are rather more scarce than appeared to be the case from earlier work, which evidently concentrated on sources that are not representative of the general population. The betaapp distribution suggests that there might be a skewed distribution of Lorentz factors over the sample, with a peak at gammab approximately 2 h-1 and a tail up to at least gammab approximately 10 h-1. There appears to be a clearly rising upper envelope to the betaapp distribution when plotted as a function of observed 5-GHz luminosity; a combination of source counts and the apparent velocity statistics in a larger sample could provide much insight into the properties of radio jet sources.