165 resultados para Two-hybrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although hormone therapy with antiandrogens has been widely used for the treatment of prostate cancer, some antiandrogens may act as androgen receptor (AR) agonists that may result in antiandrogen withdrawal syndrome. The molecular mechanism of this agonist response, however, remains unclear. Using mammalian two-hybrid assay, we report that antiandrogens, hydroxyflutamide, bicalutamide (casodex), cyproterone acetate, and RU58841, and other compounds such as genistein and RU486, can promote the interaction between AR and its coactivator, ARA70, in a dose-dependent manner. The chloramphenicol acetyltransferase assay further demonstrates that these antiandrogens and related compounds significantly enhance the AR transcriptional activity by cotransfection of AR and ARA70 in a 1:3 ratio into human prostate cancer DU145 cells. Our results suggest that the agonist activity of antiandrogens might occur with the proper interaction of AR and ARA70 in DU145 cells. These findings may provide a good model to develop better antiandrogens without agonist activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The SCF ubiquitin ligase complex of budding yeast triggers DNA replication by catalyzing ubiquitination of the S phase cyclin-dependent kinase inhibitor SIC1. SCF is composed of three proteins—ySKP1, CDC53 (Cullin), and the F-box protein CDC4—that are conserved from yeast to humans. As part of an effort to identify components and substrates of a putative human SCF complex, we isolated hSKP1 in a two-hybrid screen with hCUL1, the closest human homologue of CDC53. Here, we show that hCUL1 associates with hSKP1 in vivo and directly interacts with both hSKP1 and the human F-box protein SKP2 in vitro, forming an SCF-like particle. Moreover, hCUL1 complements the growth defect of yeast cdc53ts mutants, associates with ubiquitination-promoting activity in human cell extracts, and can assemble into functional, chimeric ubiquitin ligase complexes with yeast SCF components. Taken together, these data suggest that hCUL1 functions as part of an SCF ubiquitin ligase complex in human cells. Further application of biochemical assays similar to those described here can now be used to identify regulators/components of hCUL1-based SCF complexes, to determine whether the hCUL2–hCUL5 proteins also are components of ubiquitin ligase complexes in human cells, and to screen for chemical compounds that modulate the activities of the hSKP1 and hCUL1 proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agrobacterium tumefaciens induces crown gall tumors on plants by transferring a nucleoprotein complex, the T-complex, from the bacterium to the plant cell. The T-complex consists of T-DNA, a single-stranded DNA segment of the tumor-inducing plasmid, VirD2, an endonuclease covalently bound to the 5′ end of the T-DNA, and perhaps VirE2, a single-stranded DNA binding protein. The yeast two-hybrid system was used to screen for proteins interacting with VirD2 and VirE2 to identify components in Arabidopsis thaliana that interact with the T-complex. Three VirD2- and two VirE2-interacting proteins were identified. Here we characterize the interactions of VirD2 with two isoforms of Arabidopsis cyclophilins identified by using this analysis. The VirD2 domain interacting with the cyclophilins is distinct from the endonuclease, omega, and the nuclear localization signal domains. The VirD2–cyclophilin interaction is disrupted in vitro by cyclosporin A, which also inhibits Agrobacterium-mediated transformation of Arabidopsis and tobacco. These data strongly suggest that host cyclophilins play a role in T-DNA transfer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have identified a mammalian protein called GIPC (for GAIP interacting protein, C terminus), which has a central PDZ domain and a C-terminal acyl carrier protein (ACP) domain. The PDZ domain of GIPC specifically interacts with RGS-GAIP, a GTPase-activating protein (GAP) for Gαi subunits recently localized on clathrin-coated vesicles. Analysis of deletion mutants indicated that the PDZ domain of GIPC specifically interacts with the C terminus of GAIP (11 amino acids) in the yeast two-hybrid system and glutathione S-transferase (GST)-GIPC pull-down assays, but GIPC does not interact with other members of the RGS (regulators of G protein signaling) family tested. This finding is in keeping with the fact that the C terminus of GAIP is unique and possesses a modified C-terminal PDZ-binding motif (SEA). By immunoblotting of membrane fractions prepared from HeLa cells, we found that there are two pools of GIPC–a soluble or cytosolic pool (70%) and a membrane-associated pool (30%). By immunofluorescence, endogenous and GFP-tagged GIPC show both a diffuse and punctate cytoplasmic distribution in HeLa cells reflecting, respectively, the existence of soluble and membrane-associated pools. By immunoelectron microscopy the membrane pool of GIPC is associated with clusters of vesicles located near the plasma membrane. These data provide direct evidence that the C terminus of a RGS protein is involved in interactions specific for a given RGS protein and implicates GAIP in regulation of additional functions besides its GAP activity. The location of GIPC together with its binding to GAIP suggest that GAIP and GIPC may be components of a G protein-coupled signaling complex involved in the regulation of vesicular trafficking. The presence of an ACP domain suggests a putative function for GIPC in the acylation of vesicle-bound proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae genome encodes four MutL homologs. Of these, MLH1 and PMS1 are known to act in the MSH2-dependent pathway that repairs DNA mismatches. We have investigated the role of MLH3 in mismatch repair. Mutations in MLH3 increased the rate of reversion of the hom3–10 allele by increasing the rate of deletion of a single T in a run of 7 Ts. Combination of mutations in MLH3 and MSH6 caused a synergistic increase in the hom3–10 reversion rate, whereas the hom3–10 reversion rate in an mlh3 msh3 double mutant was the same as in the respective single mutants. Similar results were observed when the accumulation of mutations at frameshift hot spots in the LYS2 gene was analyzed, although mutation of MLH3 did not cause the same extent of affect at every LYS2 frameshift hot spot. MLH3 interacted with MLH1 in a two-hybrid system. These data are consistent with the idea that a proportion of the repair of specific insertion/deletion mispairs by the MSH3-dependent mismatch repair pathway uses a heterodimeric MLH1-MLH3 complex in place of the MLH1-PMS1 complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present an approach for monitoring protein–protein interactions within intact eukaryotic cells, which should increase our understanding of the regulatory circuitry that controls the proliferation and differentiation of cells and how these processes go awry in disease states such as cancer. Chimeric proteins composed of proteins of interest fused to complementing β-galactosidase (β-gal) deletion mutants permit a novel analysis of protein complexes within cells. In this approach, the β-gal activity resulting from the forced interaction of nonfunctional weakly complementing β-gal peptides (Δα and Δω) serves as a measure of the extent of interaction of the non-β-gal portions of the chimeras. To test this application of lacZ intracistronic complementation, proteins that form a complex in the presence of rapamycin were used. These proteins, FRAP and FKBP12, were synthesized as fusion proteins with Δα and Δω, respectively. Enzymatic β-gal activity served to monitor the formation of the rapamycin-induced chimeric FRAP/FKBP12 protein complex in a time- and dose-dependent manner, as assessed by histochemical, biochemical, and fluorescence-activated cell sorting assays. This approach may prove to be a valuable adjunct to in vitro immunoprecipitation and crosslinking methods and in vivo yeast two-hybrid and fluorescence energy transfer systems. It may also allow a direct assessment of specific protein dimerization interactions in a biologically relevant context, localized in the cell compartments in which they occur, and in the milieu of competing proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several G-protein coupled receptors, such as the β1-adrenergic receptor (β1-AR), contain polyproline motifs within their intracellular domains. Such motifs in other proteins are known to mediate protein–protein interactions such as with Src homology (SH)3 domains. Accordingly, we used the proline-rich third intracellular loop of the β1-AR either as a glutathione S-transferase fusion protein in biochemical “pull-down” assays or as bait in the yeast two-hybrid system to search for interacting proteins. Both approaches identified SH3p4/p8/p13 (also referred to as endophilin 1/2/3), a SH3 domain-containing protein family, as binding partners for the β1-AR. In vitro and in human embryonic kidney (HEK) 293 cells, SH3p4 specifically binds to the third intracellular loop of the β1-AR but not to that of the β2-AR. Moreover, this interaction is mediated by the C-terminal SH3 domain of SH3p4. Functionally, overexpression of SH3p4 promotes agonist-induced internalization and modestly decreases the Gs coupling efficacy of β1-ARs in HEK293 cells while having no effect on β2-ARs. Thus, our studies demonstrate a role of the SH3p4/p8/p13 protein family in β1-AR signaling and suggest that interaction between proline-rich motifs and SH3-containing proteins may represent a previously underappreciated aspect of G-protein coupled receptor signaling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The GTPase dynamin I and the inositol 5-phosphatase synaptojanin are nerve terminal proteins implicated in synaptic vesicle recycling. Both proteins contain COOH-terminal proline-rich domains that can interact with a variety of Src homology 3 (SH3) domains. A major physiological binding partner for dynamin I and synaptojanin in the nervous system is amphiphysin I, an SH3 domain-containing protein also concentrated in nerve terminals. We have used the proline-rich tail of synaptojanin to screen a rat brain library by the two-hybrid method to identify additional interacting partners of synaptojanin. Three related proteins containing SH3 domains that are closely related to the SH3 domains of Grb2 were isolated: SH3p4, SH3p8, and SH3p13. Further biochemical studies demonstrated that the SH3p4/8/13 proteins bind to both synaptojanin and dynamin I. The SH3p4/8/13 transcripts are differentially expressed in tissues: SH3p4 mRNA was detected only in brain, SH3p13 mRNA was present in brain and testis, and the SH3p8 transcript was detected at similar levels in multiple tissues. Members of the SH3p4/8/13 protein family were found to be concentrated in nerve terminals, and pools of synaptojanin and dynamin I were coprecipitated from brain extracts with antibodies recognizing SH3p4/8/13. These findings underscore the important role of SH3-mediated interactions in synaptic vesicle recycling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CTLA-4 plays a critical role in regulating the immune response. It is mainly located in cytoplasmic vesicles and is expressed only transiently on the surface after T cell activation. In this study, we demonstrate that CTLA-4 is associated with AP50, the medium chain of the clathrin-associated coated pit adaptor protein complex AP2. In a yeast two-hybrid screen, three individual cDNA clones that encode mouse AP50 were isolated, all of which can interact specifically with the cytoplasmic domain of mouse CTLA-4, but not with the cytoplasmic domain of mouse CD28. We have shown that CTLA-4 can bind specifically to AP50 when CTLA-4 and AP50 are cotransfected into human 293T cells. A Y201 to F201 mutation in the YVKM intracellular localization motif of the CTLA-4 cytoplasmic domain significantly diminished its binding to AP50. We also found that AP50 bound to a CTLA-4 peptide containing unphosphorylated Y201 but not to a peptide containing phosphorylated Y201. Conversely, the p85 subunit of phosphatidylinositol 3-kinase and, to a lesser extent, protein tyrosine phosphatase SYP (SHP-2) and SHP (SHP-1) bind only to the CTLA-4 peptide containing phosphorylated Y201. Therefore, the phosphorylation status of Y201 in the CTLA-4 cytoplasmic domain determines the binding specificity of CTLA-4. These results suggest that AP50 and the coated pit adaptor complex AP2 may play an important role in regulating the intracellular trafficking and function of CTLA-4.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flavonoids are secondary metabolites derived from phenylalanine and acetate metabolism that perform a variety of essential functions in higher plants. Studies over the past 30 years have supported a model in which flavonoid metabolism is catalyzed by an enzyme complex localized to the endoplasmic reticulum [Hrazdina, G. & Wagner, G. J. (1985) Arch. Biochem. Biophys. 237, 88–100]. To test this model further we assayed for direct interactions between several key flavonoid biosynthetic enzymes in developing Arabidopsis seedlings. Two-hybrid assays indicated that chalcone synthase, chalcone isomerase (CHI), and dihydroflavonol 4-reductase interact in an orientation-dependent manner. Affinity chromatography and immunoprecipitation assays further demonstrated interactions between chalcone synthase, CHI, and flavonol 3-hydroxylase in lysates from Arabidopsis seedlings. These results support the hypothesis that the flavonoid enzymes assemble as a macromolecular complex with contacts between multiple proteins. Evidence was also found for posttranslational modification of CHI. The importance of understanding the subcellular organization of elaborate enzyme systems is discussed in the context of metabolic engineering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the full-length and two engineered soluble forms (C1-C2 and Cla-C2) of type V adenylyl cyclase (ACV), we have investigated the role of an intramolecular interaction in ACV that modulates the ability of the α subunit of the stimulatory GTP-binding protein of AC (Gsα) to stimulate enzyme activity. Concentration–response curves with Gsα suggested the presence of high and low affinity sites on ACV, which interact with the G protein. Activation of enzyme by Gsα interaction at these two sites was most apparent in the C1a-C2 form of ACV, which lacks the C1b region (K572–F683). Yeast two-hybrid data demonstrated that the C1b region interacted with the C2 region and its 64-aa subdomain, C2I. Using peptides corresponding to the C2I region of ACV, we investigated the role of the C1b/C2I interaction on Gsα-mediated stimulation of C1-C2 and full-length ACV. Our data demonstrate that a 10-aa peptide corresponding to L1042–T1051 alters the profile of the activation curves of full-length and C1-C2 forms of ACV by different Gsα concentrations to mimic the activation profile observed with C1a-C2 ACV. The various peptides used in our studies did not alter forskolin-mediated stimulation of full-length and C1-C2 forms of ACV. We conclude that the C1b region of ACV interacts with the 10-aa region (L1042–T1051) in the C2 domain of the enzyme to modulate Gsα-elicited stimulation of activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ActA, a surface protein of Listeria monocytogenes, is able to induce continuous actin polymerization at the rear of the bacterium, in the cytosol of the infected cells. Its N-terminal domain is sufficient to induce actin tail formation and movement. Here, we demonstrate, using the yeast two-hybrid system, that the N-terminal domain of ActA may form homodimers. By using chemical cross-linking to explore the possibility that ActA could be a multimer on the surface of the bacteria, we show that ActA is a dimer. Cross-linking experiments on various L. monocytogenes strains expressing different ActA variants demonstrated that the region spanning amino acids 97–126, and previously identified as critical for actin tail formation, is also critical for dimer formation. A model of actin polymerization by L. monocytogenes, involving the ActA dimer, is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CP12 is a small nuclear encoded chloroplast protein of higher plants, which was recently shown to interact with NAD(P)H–glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.13), one of the key enzymes of the reductive pentosephosphate cycle (Calvin cycle). Screening of a pea cDNA library in the yeast two-hybrid system for proteins that interact with CP12, led to the identification of a second member of the Calvin cycle, phosphoribulokinase (PRK; EC 2.7.1.19), as a further specific binding partner for CP12. The exchange of cysteines for serines in CP12 demonstrate that interaction with PRK occurs at the N-terminal peptide loop of CP12. Size exclusion chromatography and immunoprecipitation assays reveal the existence of a stable 600-kDa PRK/CP12/GAPDH complex in the stroma of higher plant chloroplasts. Its stoichiometry is proposed to be of two N-terminally dimerized CP12 molecules, each carrying one PRK dimer on its N terminus and one A2B2 complex of GAPDH subunits on the C-terminal peptide loop. Incubation of the complex with NADP or NADPH, in contrast to NAD or NADH, causes its dissociation. Assays with the stromal 600-kDa fractions in the presence of the four different nicotinamide-adenine dinucleotides indicate that PRK activity depends on complex dissociation and might be further regulated by the accessible ratio of NADP/NADPH. From these results, we conclude that light regulation of the Calvin cycle in higher plants is not only via reductive activation of different proteins by the well-established ferredoxin/thioredoxin system, but in addition, by reversible dissociation of the PRK/CP12/GAPDH complex, mediated by NADP(H).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Subcellular localization directed by specific A kinase anchoring proteins (AKAPs) is a mechanism for compartmentalization of cAMP-dependent protein kinase (PKA). Using a two-hybrid screen, a novel AKAP was isolated. Because it interacts with both the type I and type II regulatory subunits, it was defined as a dual specific AKAP or D-AKAP1. Here we report the cloning and characterization of another novel cDNA isolated from that screen. This new member of the D-AKAP family, D-AKAP2, also binds both types of regulatory subunits. A message of 5 kb pairs was detected for D-AKAP2 in all embryonic stages and in all adult tissues tested. In brain, skeletal muscle, kidney, and testis, a 10-kb mRNA was identified. In testis, several small mRNAs were observed. Therefore, D-AKAP2 represents a novel family of proteins. cDNA cloning from a mouse testis library identified the full length D-AKAP2. It is composed of 372 amino acids which includes the R binding fragment, residues 333–372, at its C-terminus. Based on coprecipitation assays, the R binding domain interacts with the N-terminal dimerization domain of RIα and RIIα. A putative RGS domain was identified near the N-terminal region of D-AKAP2. The presence of this domain raises the intriguing possibility that D-AKAP2 may interact with a Gα protein thus providing a link between the signaling machinery at the plasma membrane and the downstream kinase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Activation of the cascade of proteolytic caspases has been identified as the final common pathway of apoptosis in diverse biological systems. We have isolated a gene, termed MRIT, that possesses overall sequence homology to FLICE (MACH), a large prodomain caspase that links the aggregated complex of the death domain receptors of the tumor necrosis factor receptor family to downstream caspases. However, unlike FLICE, the C-terminal domain of MRIT lacks the caspase catalytic consensus sequence QAC(R/Q)G. Nonetheless MRIT activates caspase-dependent death. Using yeast two-hybrid assays, we demonstrate that MRIT associates with caspases possessing large and small prodomains (FLICE, and CPP32/YAMA), as well as with the adaptor molecule FADD. In addition, MRIT simultaneously and independently interacts with BclXL and FLICE in mammalian cells. Thus, MRIT is a mammalian protein that interacts simultaneously with both caspases and a Bcl-2 family member.