192 resultados para Transforming growth factor-beta


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transforming growth factor beta s (TGF-beta s) are a group of multifunctional growth factors which inhibit cell cycle progression in many cell types. The TGF-beta-induced cell cycle arrest has been partially attributed to the regulatory effects of TGF-beta on both the levels and the activities of the G1 cyclins and their kinase partners. The activities of these kinases are negatively regulated by a number of small proteins, p21 (WAF1, Cip1), p27Kip1, p16, and p15INK4B, that physically associate with cyclins, cyclin-dependent kinases, or cyclin-Cdk complexes. p21 has been previously shown to be transcriptionally induced by DNA damage through p53 as a mediator. We demonstrate that TGF-beta also causes a rapid transcriptional induction of p21, suggesting that p21 can respond to both intracellular and extracellular signals for cell cycle arrest. In contrast to DNA damage, however, induction of p21 by TGF-beta is not dependent on wild-type p53. The cell line studied in these experiments, HaCaT, contains two mutant alleles of p53, which are unable to activate transcription from the p21 promoter when overexpressed. In addition, TGF-beta and p53 act through distinct elements in the p21 promoter. Taken together, these findings suggest that TGF-beta can induce p21 through a p53-independent pathway. Previous findings have implicated p27Kip1 and p15INK2B as effectors mediating the TGF-beta growth inhibitory effect. These results demonstrate that a single extracellular antiproliferative signal, TGF-beta, can act through multiple signaling pathways to elicit a growth arrest response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cell culture, type alpha transforming growth factor (TGF-alpha) stimulates epithelial cell growth, whereas TGF-beta 1 overrides this stimulatory effect and is growth inhibitory. Transgenic mice that overexpress TGF-alpha under control of the mouse mammary tumor virus (MMTV) promoter/enhancer exhibit mammary ductal hyperplasia and stochastic development of mammary carcinomas, a process that can be accelerated by administration of the chemical carcinogen 7,12-dimethylbenz[a]anthracene. MMTV-TGF-beta 1 transgenic mice display mammary ductal hypoplasia and do not develop mammary tumors. We report that in crossbreeding experiments involving the production of mice carrying both the MMTV-TGF-beta 1 and MMTV-TGF-alpha transgenes, there is marked suppression of mammary tumor formation and that MMTV-TGF-beta 1 transgenic mice are resistant to 7,12-dimethylbenz[a]anthracene-induced mammary tumor formation. These data demonstrate that overexpression of TGF-beta 1 in vivo can markedly suppress mammary tumor development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the more intriguing aspects of transforming growth factor beta 1 (TGF beta 1) is its ability to function as both a mitogenic factor for certain mesenchymal cells and a potent growth inhibitor of lymphoid, endothelial, and epithelial cells. Data are presented indicating that c-myc may play a pivotal role in both the mitogenic and antiproliferative actions of TGF beta 1. In agreement with previous studies using C3H/10T1/2 fibroblasts constitutively expressing an exogenous c-myc cDNA, we show that AKR-2B fibroblasts expressing a chimeric estrogen-inducible form of c-myc (mycER) are able to form colonies in soft agar in the presence of TGF beta 1 only when c-myc is activated by hormone. Whereas these findings support a synergistic role for c-myc in mitogenic responses to TGF beta 1, we also find that c-myc can antagonize the growth-inhibitory response to TGF beta 1. Mouse keratinocytes (BALB/MK), which are normally growth-arrested by TGF beta 1, are rendered insensitive to the growth-inhibitory effects of TGF beta 1 upon mycER activation. This ability of mycER activation to block TGF beta 1-induced growth arrest was found to occur only when the fusion protein was induced with hormone in the early part of G1. Addition of estradiol late in G1 had no suppressive effect on TGF beta 1-induced growth inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aberrant expression of transforming growth factor beta 1 (TGF-beta 1) has been implicated in a number of disease processes, particularly those involving fibrotic and inflammatory lesions. To determine the in vivo effects of overexpression of TGF-beta 1 on the function and structure of hepatic as well as extrahepatic tissues, transgenic mice were generated containing a fusion gene (Alb/TGF-beta 1) consisting of modified porcine TGF-beta 1 cDNA under the control of the regulatory elements of the mouse albumin gene. Five transgenic lines were developed, all of which expressed the Alb/TGF-beta 1 transgene selectively in hepatocytes. The transgenic line 25 expressing the highest level of the transgene in the liver also had high (> 10-fold over control) plasma levels of TGF-beta 1. Hepatic fibrosis and apoptotic death of hepatocytes developed in all the transgenic lines but was more pronounced in line 25. The fibrotic process was characterized by deposition of collagen around individual hepatocytes and within the space of Disse in a radiating linear pattern. Several extrahepatic lesions developed in line 25, including glomerulonephritis and renal failure, arteritis and myocarditis, as well as atrophic changes in pancreas and testis. The results from this transgenic model strongly support the proposed etiological role for TGF-beta 1 in a variety of fibrotic and inflammatory disorders. The transgenic model may also provide an appropriate paradigm for testing therapeutic interventions aimed at neutralizing the detrimental effects of this important cytokine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Articular cartilage chondrocytes have the unique ability to elaborate large amounts of extracellular pyrophosphate (PPi), and transforming growth factor beta (TGF beta) appears singular among cartilage regulatory factors in stimulating PPi production. TGF beta caused a time and dose-dependent increase in intracellular and extracellular PPi in human articular chondrocyte cultures. TGF beta and interleukin 1 beta (IL-1 beta) antagonistically regulate certain chondrocyte functions. IL-1 beta profoundly inhibited basal and TGF beta-induced PPi elaboration. To address mechanisms involved with the regulation of PPi synthesis by IL-1 beta and TGF beta, we analyzed the activity of the PPi-generating enzyme NTP pyrophosphohydrolase (NTPPPH) and the PPi-hydrolyzing enzyme alkaline phosphatase. Human chondrocyte NTPPPH activity was largely attributable to plasma cell membrane glycoprotein 1, PC-1. Furthermore, TGF beta induced comparable increases in the activity of extracellular PPi, intracellular PPi, and cellular NTPPPH and in the levels of PC-1 protein and mRNA in chondrocytes as well as a decrease in alkaline phosphatase. All of these TGF beta-induced responses were completely blocked by IL-1 beta. Thus, IL-1 beta may be an important regulator of mineralization in chondrocytes by inhibiting TGF beta-induced PPi production and PC-1 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor type beta (TGF-beta) is a multifunctional factor that regulates proliferation and differentiation of many cell types. TGF-beta mediates its effects by binding to and activating cell surface receptors that possess serine/threonine kinase activity. However, the intracellular signaling pathways through which TGF-beta receptors act remain largely unknown. Here we show that TGF-beta activates a 78-kDa protein (p78) serine/threonine kinase as evidenced by an in-gel kinase assay. Ligand-induced activation of the kinase was near-maximal 5 min after TGF-beta addition to the cells and occurred exclusively on serine and threonine residues. This kinase is distinct from TGF-beta receptor type II, as well as several cytoplasmic serine/threonine kinases of similar size, including protein kinase C, Raf, mitogen-activated protein kinase kinase kinase, and ribosomal S6 kinase. Indeed, these kinases can be separated almost completely from p78 kinase by immunoprecipitation with specific antibodies. Furthermore, using different cell lines, we demonstrate that p78 kinase is activated only in cells for which TGF-beta can act as a growth inhibitory factor. These data raise the interesting possibility that protein serine/threonine kinases contribute to the intracellular relay of biological signals originating from receptor serine/threonine kinases such as the TGF-beta receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All three isoforms of transforming growth factors beta (TGF-betal, TGF-beta2, and TGF-beta3) are secreted as latent complexes and activated extracellularly, leading to the release of the mature cytokines from their noncovalently associated proregions, also known as latency-associated peptides (LAPs). The LAP region of TGF-beta1 was expressed in a baculovirus expression system and purified to homogeneity. In vitro assays of growth inhibition and gene induction mediated by TGF-beta3 demonstrate that recombinant TGF-beta1 LAP is a potent inhibitor of the activities of TGF-betal, -beta2, and -beta3. Effective dosages of LAP for 50% neutralization of TGF-beta activities range from 4.7- to 80-fold molar excess depending on the TGF-beta isoform and activity examined. Using 125I-labeled LAP, we show that the intraperitoneal application route is effective for systemic administration of LAP. Comparison of concentrations of LAP in tissues shows a homogenous pattern in most organs with the exception of heart and muscle, in which levels of LAP are 4- to 8-fold lower. In transgenic mice with elevated hepatic levels of bioactive TGF-betal, treatment with recombinant LAP completely reverses suppression of the early proliferative response induced by TGF-beta1 in remnant livers after partial hepatectomy. The results suggest that recombinant LAP is a potent inhibitor of bioactive TGF-beta both in vitro and in vivo, after intraperitoneal administration. Recombinant LAP should be a useful tool for novel approaches to study and therapeutically modulate pathophysiological processes mediated by TGF-beta3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uninjured rat arteries transduced with an adenoviral vector expressing an active form of transforming growth factor β1 (TGF-β1) developed a cellular and matrix-rich neointima, with cartilaginous metaplasia of the vascular media. Explant cultures of transduced arteries showed that secretion of active TGF-β1 ceased by 4 weeks, the time of maximal intimal thickening. Between 4 and 8 weeks, the cartilaginous metaplasia resolved and the intimal lesions regressed almost completely, in large part because of massive apoptosis. Thus, locally expressed TGF-β1 promotes intimal growth and appears to cause transdifferentiation of vascular smooth muscle cells into chondrocytes. Moreover, TGF-β1 withdrawal is associated with regression of vascular lesions. These data suggest an unexpected plasticity of the adult vascular smooth muscle cell phenotype and provide an etiology for cartilaginous metaplasia of the arterial wall. Our observations may help to reconcile divergent views of the role of TGF-β1 in vascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) was found to inhibit differentiation of myogenic cells only when they were grown to high density. Inhibition also occurred when myogenic cells were cocultured with other types of mesenchymal cells but not when they were cocultured with epithelial cells. It is therefore possible that some density-dependent signaling mediates the intracellular response to TGF-β. Within 30 min of treatment, TGF-β induced translocation of MEF2, but not MyoD, myogenin, or p21, to the cytoplasm of myogenic cells grown to high density. Translocation was reversible on withdrawal of TGF-β. By using immune electron microscopy and Western blot analysis on subcellular fractions, MEF2 was shown to be tightly associated with cytoskeleton membrane components. To test whether MEF2 export from the nucleus was causally related to the inhibitory action of TGF-β, we transfected C2C12 myoblasts with MEF2C containing the nuclear localization signal of simian virus 40 large T antigen (nlsSV40). Myogenic cells expressing the chimerical MEF2C/nlsSV40, but not wild-type MEF2C, retained this transcription factor in the nucleus and were resistant to the inhibitory action of TGF-β. We propose a mechanism in which the inhibition of myogenesis by TGF-β is mediated through MEF2 localization to the cytoplasm, thus preventing it from participating in an active transcriptional complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A myelin basic protein (MBP)-specific BALB/c T helper 1 (Th1) clone was transduced with cDNA for murine latent transforming growth factor-β1 (TGF-β1) by coculture with fibroblasts producing a genetically engineered retrovirus. When SJL x BALB/c F1 mice, immunized 12–15 days earlier with proteolipid protein in complete Freund’s adjuvant, were injected with 3 × 106 cells from MBP-activated untransduced cloned Th1 cells, the severity of experimental allergic encephalomyelitis (EAE) was slightly increased. In contrast, MBP-activated (but not resting) latent TGF-β1-transduced T cells significantly delayed and ameliorated EAE development. This protective effect was negated by simultaneously injected anti-TGF-β1. The transduced cells secreted 2–4 ng/ml of latent TGF-β1 into their culture medium, whereas control cells secreted barely detectable amounts. mRNA profiles for tumor necrosis factor, lymphotoxin, and interferon-γ were similar before and after transduction; interleukin-4 and -10 were absent. TGF-β1-transduced and antigen-activated BALB/c Th1 clones, specific for hemocyanin or ovalbumin, did not ameliorate EAE. Spinal cords from mice, taken 12 days after receiving TGF-β1-transduced, antigen-activated cells, contained detectable amounts of TGF-β1 cDNA. We conclude that latent TGF-β1-transduced, self-reactive T cell clones may be useful in the therapy of autoimmune diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) regulates a variety of physiologic processes, including growth inhibition, differentiation, and induction of apoptosis. Some TGF-β-initiated signals are conveyed through Smad3; TGF-β binding to its receptors induces phosphorylation of Smad3, which then migrates to the nucleus where it functions as a transcription factor. We describe here the association of Smad3 with the nuclear protooncogene protein SnoN. Overexpression of SnoN represses transcriptional activation by Smad3. Activation of TGF-β signaling leads to rapid degradation of SnoN and, to a lesser extent, of the related Ski protein, and this degradation is likely mediated by cellular proteasomes. These results demonstrate the existence of a cascade of the TGF-β signaling pathway, which, upon TGF-β stimulation, leads to the destruction of protooncoproteins that antagonize the activation of the TGF-β signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) is a well characterized cytokine that appears to play a major role in directing the cellular response to injury, driving fibrogenesis, and, thus, potentially underlying the progression of chronic injury to fibrosis. In this study, we report the use of a novel TGF-β receptor antagonist to block fibrogenesis induced by ligation of the common bile duct in rats. The antagonist consisted of a chimeric IgG containing the extracellular portion of the TGF-β type II receptor. This “soluble receptor” was infused at the time of injury; in some experiments it was given at 4 days after injury, as a test of its ability to reverse fibrogenesis. The latter was assessed by expression of collagen, both as the mRNA in stellate cells isolated from control or injured liver and also by quantitative histochemistry of tissue sections. When the soluble receptor was administered at the time of injury, collagen I mRNA in stellate cells from the injured liver was 26% of that from animals receiving control IgG (P < 0.0002); when soluble receptor was given after injury induction, collagen I expression was 35% of that in control stellate cells (P < 0.0001). By quantitative histochemistry, hepatic fibrosis in treated animals was 55% of that in controls. We conclude that soluble TGF-β receptor is an effective inhibitor of experimental fibrogenesis in vivo and merits clinical evaluation as a novel agent for controlling hepatic fibrosis in chronic liver injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drosophila Mad proteins are intracellular signal transducers of decapentaplegic (dpp), the Drosophila transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) homolog. Studies in which the mammalian Smad homologs were transiently overexpressed in cultured cells have implicated Smad2 in TGF-β signaling, but the physiological relevance of the Smad3 protein in signaling by TGF-β receptors has not been established. Here we stably expressed Smad proteins at controlled levels in epithelial cells using a novel approach that combines highly efficient retroviral gene transfer and quantitative cell sorting. We show that upon TGF-β treatment Smad3 becomes rapidly phosphorylated at the SSVS motif at its very C terminus. Either attachment of an epitope tag to the C terminus or replacement of these three serine residues with alanine abolishes TGF-β-induced Smad3 phosphorylation; these proteins act in a dominant-negative fashion to block the antiproliferative effect of TGF-β in mink lung epithelial cells. A Smad3 protein in which the three C-terminal serines have been replaced by aspartic acids is also a dominant inhibitor of TGF-β signaling, but can activate plasminogen activator inhibitor 1 (PAI-1) transcription in a ligand-independent fashion when its nuclear localization is forced by transient overexpression. Phosphorylation of the three C-terminal serine residues of Smad3 by an activated TGF-β receptor complex is an essential step in signal transduction by TGF-β for both inhibition of cell proliferation and activation of the PAI-1 promoter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful gene therapy depends on stable transduction of hematopoietic stem cells. Target cells must cycle to allow integration of Moloney-based retroviral vectors, yet hematopoietic stem cells are quiescent. Cells can be held in quiescence by intracellular cyclin-dependent kinase inhibitors. The cyclin-dependent kinase inhibitor p15INK4B blocks association of cyclin-dependent kinase (CDK)4/cyclin D and p27kip-1 blocks activity of CDK2/cyclin A and CDK2/cyclin E, complexes that are mandatory for cell-cycle progression. Antibody neutralization of β transforming growth factor (TGFβ) in serum-free medium decreased levels of p15INK4B and increased colony formation and retroviral-mediated transduction of primary human CD34+ cells. Although TGFβ neutralization increased colony formation from more primitive, noncycling hematopoietic progenitors, no increase in M-phase-dependent, retroviral-mediated transduction was observed. Transduction of the primitive cells was augmented by culture in the presence of antisense oligonucleotides to p27kip-1 coupled with TGFβ-neutralizing antibodies. The transduced cells engrafted immune-deficient mice with no alteration in human hematopoietic lineage development. We conclude that neutralization of TGFβ, plus reduction in levels of the cyclin-dependent kinase inhibitor p27, allows transduction of primitive and quiescent hematopoietic progenitor populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) regulates a broad range of biological processes, including cell growth, development, differentiation, and immunity. TGF-β signals through its cell surface receptor serine kinases that phosphorylate Smad2 or Smad3 proteins. Because Smad3 and its partner Smad4 bind to only 4-bp Smad binding elements (SBEs) in DNA, a central question is how specificity of TGF-β-induced transcription is achieved. We show that Smad3 selectively binds to two of the three SBEs in PE2.1, a TGF-β-inducible fragment of the plasminogen activator inhibitor-1 promoter, to mediate TGF-β-induced transcription; moreover, a precise 3-bp spacer between one SBE and the E-box, a binding site for transcription factor μE3 (TFE3), is essential for TGF-β-induced transcription. Whereas an isolated Smad3 MH1 domain binds to TFE3, TGF-β receptor-mediated phosphorylation of full-length Smad3 enhances its binding to TFE3. Together, these studies elucidate an important mechanism for specificity in TGF-β-induced transcription of the plasminogen activator inhibitor-1 gene.