204 resultados para Transcription Factor AP-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The infected cell protein no. 0 (ICP0) of herpes simplex virus 1 (HSV-1) is a promiscuous transactivator shown to enhance the expression of gene introduced into cells by infection or transfection. At the molecular level, ICP0 is a 775-aa ring finger protein localized initially in the nucleus and late in infection in the cytoplasm and mediates the degradation of several proteins and stabilization of others. None of the known functions at the molecular level account for the apparent activity of ICP0 as a transactivator. Here we report that ICP0 functionally interacts with cellular transcription factor BMAL1, a member of the basic helix–loop–helix PER-ARNT-SIM (PAS) super family of transcriptional regulators. Specifically, sequences mapped to the exon II of ICP0 interacted with BMAL1 in the yeast two-hybrid system and in reciprocal pull-down experiments in vitro. Moreover, the enhancement of transcription of a luciferase reporter construct whose promoter contained multiple BMAL1-binding sites by ICP0 and BMAL1 was significantly greater than that observed by ICP0 or BMAL1 alone. Although the level of BMAL1 present in nuclei of infected cells remained unchanged between 3 and 8 h after infection, the level of cytoplasmic BMAL1 was reduced at 8 h after infection. The reduction of cytoplasmic BMAL1 was significantly greater in cells infected with the ICP0-null mutant than in the wild-type virus-infected cells, suggesting that ICP0 mediates partial stabilization of the protein. These results indicate that ICP0 interacts physically and functionally with at least one cellular transcription-regulatory factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (ω3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (ω6) fatty acids such as arachidonic acid (AA) reportedly promote risk. To investigate the effects of fatty acids on tumorigenesis, we performed experiments to examine the effects of the ω3 fatty acids EPA and DHA and of the ω6 fatty acid AA on phorbol 12-tetradecanoate 13-acetate (TPA)-induced or epidermal growth factor (EGF)-induced transcription activator protein 1 (AP-1) transactivation and on the subsequent cellular transformation in a mouse epidermal JB6 cell model. DHA treatment resulted in marked inhibition of TPA- and EGF-induced cell transformation by inhibiting AP-1 transactivation. EPA treatment also inhibited TPA-induced AP-1 transactivation and cell transformation but had no effect on EGF-induced transformation. AA treatment had no effect on either TPA- or EGF-induced AP-1 transactivation or transformation, but did abrogate the inhibitory effects of DHA on TPA- or EGF-induced AP-1 transactivation and cell transformation in a dose-dependent manner. The results of this study demonstrate that the inhibitory effects of ω3 fatty acids on tumorigenesis are more significant for DHA than for EPA and are related to an inhibition of AP-1. Similarly, because AA abrogates the beneficial effects of DHA, the dietary ratio of ω6 to ω3 fatty acids may be a significant factor in mediating tumor development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caffeic acid phenethyl ester (CAPE), an active component of propolis from honeybee hives, is known to have antimitogenic, anticarcinogenic, antiinflammatory, and immunomodulatory properties. The molecular basis for these diverse properties is not known. Since the role of the nuclear factor NF-kappa B in these responses has been documented, we examined the effect of CAPE on this transcription factor. Our results show that the activation of NF-kappa B by tumor necrosis factor (TNF) is completely blocked by CAPE in a dose- and time-dependent manner. Besides TNF, CAPE also inhibited NF-kappa B activation induced by other inflammatory agents including phorbol ester, ceramide, hydrogen peroxide, and okadaic acid. Since the reducing agents reversed the inhibitory effect of CAPE, it suggests the role of critical sulfhydryl groups in NF-kappa B activation. CAPE prevented the translocation of the p65 subunit of NF-kappa B to the nucleus and had no significant effect on TNF-induced I kappa B alpha degradation, but did delay I kappa B alpha resynthesis. The effect of CAPE on inhibition of NF-kappa B binding to the DNA was specific, in as much as binding of other transcription factors including AP-1, Oct-1, and TFIID to their DNA were not affected. When various synthetic structural analogues of CAPE were examined, it was found that a bicyclic, rotationally constrained, 5,6-dihydroxy form was superactive, whereas 6,7-dihydroxy variant was least active. Thus, overall our results demonstrate that CAPE is a potent and a specific inhibitor of NF-kappa B activation and this may provide the molecular basis for its multiple immunomodulatory and antiinflammatory activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The composite transcription factor activating protein 1 (AP-1) integrates various mitogenic signals in a large number of cell types, and is therefore a major regulator of cell proliferation. In the normal human endometrium, proliferation and differentiation alternate in a cyclic fashion, with progesterone being largely implicated in the latter process. However, the effects of progesterone and the progesterone receptor (hPR) on AP-1 activity in the human endometrium are not known. To address this issue, HEC-1-B endometrial adenocarcinoma cells, which are devoid of hPR, were transfected with luciferase reporter constructs driven by two different AP-1-dependent promoters. Unexpectedly, cotransfection of hPR caused a marked induction of luciferase activity in the absence of ligand on both promoters. The magnitude of this induction was similar to that observed in response to the phorbol ester TPA. Addition of ligand reversed the stimulating effect of the unliganded hPR on AM activity in these cells. These effects were specific for hPR, and were not observed with either human estrogen receptor or human glucocorticoid receptor. Furthermore, they strictly depended on the presence of AP-1-responsive sequences within target promoters. Finally, the described effects of hPR on AP-1 activity were shown to be cell-type specific, because they could not be demonstrated in SKUT-1-B, JEG-3, and COS-7 cells. To our knowledge this is the first report of an unliganded steroid receptor stimulating AP-1 activity. This effect and its reversal in the presence of ligand suggest a novel mechanism, through which hPR can act as a key regulator of both proliferation and differentiation in the human endometrium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human immunodeficiency virus type 1 (HIV-1) Rev protein is required for nuclear export of late HIV-1 mRNAs. This function is dependent on the mutationally defined Rev activation domain, which also forms a potent nuclear export signal. Transcription factor IIIA (TFIIIA) binds to 5S rRNA transcripts and this interaction has been proposed to play a role in the efficient nuclear export of 5S rRNA in amphibian oocytes. Here it is reported that amphibian TFIIIA proteins contain a sequence element with homology to the Rev activation domain that effectively substitutes for this domain in inducing the nuclear export of late HIV-1 mRNAs. It is further demonstrated that this TFIIIA sequence element functions as a protein nuclear export signal in both human cells and frog oocytes. Thus, this shared protein motif may play an analogous role in mediating the nuclear export of both late HIV-1 RNAs and 5S rRNA transcripts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anergy is a major mechanism to ensure antigen-specific tolerance in T lymphocytes in the adult. In vivo, anergy has mainly been studied at the cellular level. In this study, we used the T-cell-activating superantigen staphylococcal enterotoxin A (SEA) to investigate molecular mechanisms of T-lymphocyte anergy in vivo. Injection of SEA to adult mice activates CD4+ T cells expressing certain T-cell receptor (TCR) variable region beta-chain families and induces strong and rapid production of interleukin 2 (IL-2). In contrast, repeated injections of SEA cause CD4+ T-cell deletion and anergy in the remaining CD4+ T cells, characterized by reduced expression of IL-2 at mRNA and protein levels. We analyzed expression of AP-1, NF-kappa B, NF-AT, and octamer binding transcription factors, which are known to be involved in the regulation of IL-2 gene promoter activity. Large amounts of AP-1 and NF-kappa B and significant quantities of NF-AT were induced in SEA-activated CD4+ spleen T cells, whereas Oct-1 and Oct-2 DNA binding activity was similar in both resting and activated T cells. In contrast, anergic CD4+ T cells contained severely reduced levels of AP-1 and Fos/Jun-containing NF-AT complexes but expressed significant amounts of NF-kappa B and Oct binding proteins after SEA stimulation. Resolution of the NF-kappa B complex demonstrated predominant expression of p50-p65 heterodimers in activated CD4+ T cells, while anergic cells mainly expressed the transcriptionally inactive p50 homodimer. These alterations of transcription factors are likely to be responsible for repression of IL-2 in anergic T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retinal protein Nrl belongs to a distinct subfamily of basic motif-leucine zipper DNA-binding proteins and has been shown to bind extended AP-1-like sequence elements as a homo- or heterodimer. Here, we demonstrate that Nrl can positively regulate the expression of the photoreceptor cell-specific gene rhodopsin. Electrophoretic mobility-shift analysis reveals that a protein(s) in nuclear extracts from bovine retina and the Y79 human retinoblastoma cell line binds to a conserved Nrl response element (NRE) in the upstream promoter region of the rhodopsin gene. Nrl or an antigenically similar protein is shown to be part of the bound protein complex by supershift experiments using Nrl-specific antiserum. Cotransfection studies using an Nrl-expression plasmid and a luciferase reporter gene demonstrate that interaction of the Nrl protein with the -61 to -84 region of the rhodopsin promoter (which includes the NRE) stimulates expression of the reporter gene in CV-1 monkey kidney cells. This Nrl-mediated transactivation is specifically inhibited by coexpression of a naturally occurring truncated form of Nrl (dominant negative effect). Involvement of Nrl in photoreceptor gene regulation and its continued high levels of expression in the adult retina suggest that Nrl plays a significant role in controlling retinal function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GATA-1 is a zinc-finger transcription factor that plays a critical role in the normal development of hematopoietic cell lineages. In human and murine erythroid cells a previously undescribed 40-kDa protein is detected with GATA-1-specific antibodies. We show that the 40-kDa GATA-1 (GATA-1s) is produced by the use of an internal AUG initiation codon in the GATA-1 transcript. The GATA-1 proteins share identical binding activity and form heterodimers in erythroleukemic cells but differ in their transactivation potential and in their expression in developing mouse embryos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NMP-1 was initially identified as a nuclear matrix-associated DNA-binding factor that exhibits sequence-specific recognition for the site IV regulatory element of a histone H4 gene. This distal promoter domain is a nuclear matrix interaction site. In the present study, we show that NMP-1 is the multifunctional transcription factor YY1. Gel-shift and Western blot analyses demonstrate that NMP-1 is immunoreactive with YY1 antibody. Furthermore, purified YY1 protein specifically recognizes site IV and reconstitutes the NMP-1 complex. Western blot and gel-shift analyses indicate that YY1 is present within the nuclear matrix. In situ immunofluorescence studies show that a significant fraction of YY1 is localized in the nuclear matrix, principally but not exclusively associated with residual nucleoli. Our results confirm that NMP-1/YY1 is a ubiquitous protein that is present in both human cells and in rat osteosarcoma ROS 17/2.8 cells. The finding that NMP-1 is identical to YY1 suggests that this transcriptional regulator may mediate gene-matrix interactions. Our results are consistent with the concept that the nuclear matrix may functionally compartmentalize the eukaryotic nucleus to support regulation of gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feedback regulation of transcription from the low density lipoprotein (LDL) receptor gene is fundamentally important in the maintenance of intracellular sterol balance. The region of the LDL receptor promoter responsible for normal sterol regulation contains adjacent binding sites for the ubiquitous transcription factor Sp1 and the cholesterol-sensitive sterol regulatory element-binding proteins (SREBPs). Interestingly, both are essential for normal sterolmediated regulation of the promoter. The cooperation by Sp1 and SREBP-1 occurs at two steps in the activation process. SREBP-1 stimulates the binding of Sp1 to its adjacent recognition site in the promoter followed by enhanced stimulation of transcription after both proteins are bound to DNA. In the present report, we have defined the protein domains of Sp1 that are required for both synergistic DNA binding and transcriptional activation. The major activation domains of Sp1 that have previously been shown to be essential to activation of promoters containing multiple Sp1 sites are required for activation of the LDL receptor promoter. Additionally, the C domain is also crucial. This slightly acidic approximately 120-amino acid region is not required for efficient synergistic activation by multiple Sp1 sites or in combination with other recently characterized transcriptional regulators. We also show that Sp1 domain C is essential for full, enhanced DNA binding by SREBP-1. Taken together with other recent studies on the role of Sp1 in promoter activation, the current experiments suggest a unique combinatorial mechanism for promoter activation by two distinct transcription factors that are both essential to intracellular cholesterol homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin 12 (IL-12)-induced T helper 1 (Th1) development requires Stat4 activation. However, antigen-activated Th1 cells can produce interferon γ (IFN-γ) independently of IL-12 and Stat4 activation. Thus, in differentiated Th1 cells, factors regulated by IL-12 and Stat4 may be involved in IFN-γ production. Using subtractive cloning, we identified ERM, an Ets transcription factor, to be a Th1-specific, IL-12-induced gene. IL-12-induction of ERM occurred in wild-type and Stat1-deficient, but not Stat4-deficient, T cells, suggesting ERM is Stat4-inducible. Retroviral expression of ERM did not restore IFN-γ production in Stat4-deficient T cells, but augmented IFN-γ expression in Stat4-heterozygous T cells. Ets factors frequently regulate transcription via cooperative interactions with other transcription factors, and ERM has been reported to cooperate with c-Jun. However, in the absence of other transcription factors, ERM augmented expression of an IFN-γ reporter by only 2-fold. Thus, determining the requirement for ERM in Th1 development likely will require gene targeting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of the DMP1 transcription factor, a cyclin D-binding Myb-like protein, induces growth arrest in mouse embryo fibroblast strains but is devoid of antiproliferative activity in primary diploid fibroblasts that lack the ARF tumor suppressor gene. DMP1 binds to a single canonical recognition site in the ARF promoter to activate gene expression, and in turn, p19ARF synthesis causes p53-dependent cell cycle arrest. Unlike genes such as Myc, adenovirus E1A, and E2F-1, which, when overexpressed, activate the ARF-p53 pathway and trigger apoptosis, DMP1, like ARF itself, does not induce programmed cell death. Therefore, apart from its recently recognized role in protecting cells from potentially oncogenic signals, ARF can be induced in response to antiproliferative stimuli that do not obligatorily lead to apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological sensing of small molecules such as NO, O2, and CO is an important area of research; however, little is know about how CO is sensed biologically. The photosynthetic bacterium Rhodospirillum rubrum responds to CO by activating transcription of two operons that encode a CO-oxidizing system. A protein, CooA, has been identified as necessary for this response. CooA is a member of a family of transcriptional regulators similar to the cAMP receptor protein and fumavate nitrate reduction from Escherichia coli. In this study we report the purification of wild-type CooA from its native organism, R. rubrum, to greater than 95% purity. The purified protein is active in sequence-specific DNA binding in the presence of CO, but not in the absence of CO. Gel filtration experiments reveal the protein to be a dimer in the absence of CO. Purified CooA contains 1.6 mol heme per mol of dimer. Upon interacting with CO, the electronic spectrum of CooA is perturbed, indicating the direct binding of CO to the heme of CooA. A hypothesis for the mechanism of the protein’s response to CO is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertrophy of mammalian cardiac muscle is mediated, in part, by angiotensin II through an angiotensin II type1a receptor (AT1aR)-dependent mechanism. To understand how the level of AT1aRs is altered in this pathological state, we studied the expression of an injected AT1aR promoter-luciferase reporter gene in adult rat hearts subjected to an acute pressure overload by aortic coarctation. This model was validated by demonstrating that coarctation increased expression of the α-skeletal actin promoter 1.7-fold whereas the α-myosin heavy chain promoter was unaffected. Pressure overload increased expression from the AT1aR promoter by 1.6-fold compared with controls. Mutations introduced into consensus binding sites for AP-1 or GATA transcription factors abolished the pressure overload response but had no effect on AT1aR promoter activity in control animals. In extracts from coarcted hearts, but not from control hearts, a Fos-JunB-JunD complex and GATA-4 were detected in association with the AP-1 and GATA sites, respectively. These results establish that the AT1aR promoter is active in cardiac muscle and its expression is induced by pressure overload, and suggest that this response is mediated, in part, by a functional interaction between AP-1 and GATA-4 transcription factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various transcription factors act as nuclear effectors of the cAMP-dependent signaling pathway. These are the products of three genes in the mouse, CREB, CRE modulator (CREM), and ATF-1. CREM proteins are thought to play important roles within the hypothalamic–pituitary axis and in the control of rhythmic functions in the pineal gland. We have generated CREM-mutant mice and investigated their response in a variety of behavioral tests. CREM-null mice show a drastic increase in locomotion. In contrast to normal mice, the CREM-deficient mice show equal locomotor activity during the circadian cycle. The anatomy of the hypothalamic suprachiasmatic nuclei, the center of the endogenous pacemaker, is normal in mutant mice. Remarkably, CREM mutant mice also elicit a different emotional state, revealed by a lower anxiety in two different behavioral models, but they preserve the conditioned reactiveness to stress. These results demonstrate the high degree of functional specificity of each cAMP-responsive transcription factor in behavioral control.