41 resultados para Time and state dependent rules
Resumo:
In optimal foraging theory, search time is a key variable defining the value of a prey type. But the sensory-perceptual processes that constrain the search for food have rarely been considered. Here we evaluate the flight behavior of bumblebees (Bombus terrestris) searching for artificial flowers of various sizes and colors. When flowers were large, search times correlated well with the color contrast of the targets with their green foliage-type background, as predicted by a model of color opponent coding using inputs from the bees' UV, blue, and green receptors. Targets that made poor color contrast with their backdrop, such as white, UV-reflecting ones, or red flowers, took longest to detect, even though brightness contrast with the background was pronounced. When searching for small targets, bees changed their strategy in several ways. They flew significantly slower and closer to the ground, so increasing the minimum detectable area subtended by an object on the ground. In addition, they used a different neuronal channel for flower detection. Instead of color contrast, they used only the green receptor signal for detection. We relate these findings to temporal and spatial limitations of different neuronal channels involved in stimulus detection and recognition. Thus, foraging speed may not be limited only by factors such as prey density, flight energetics, and scramble competition. Our results show that understanding the behavioral ecology of foraging can substantially gain from knowledge about mechanisms of visual information processing.
Resumo:
Smad proteins are cytoplasmic signaling effectors of transforming growth factor-β (TGF-β) family cytokines and regulate gene transcription in the nucleus. Receptor-activated Smads (R-Smads) become phosphorylated by the TGF-β type I receptor. Rapid and precise transport of R-Smads to the nucleus is of crucial importance for signal transduction. By focusing on the R-Smad Smad3 we demonstrate that 1) only activated Smad3 efficiently enters the nucleus of permeabilized cells in an energy- and cytosol-dependent manner. 2) Smad3, via its N-terminal domain, interacts specifically with importin-β1 and only after activation by receptor. In contrast, the unique insert of exon3 in the N-terminal domain of Smad2 prevents its association with importin-β1. 3) Nuclear import of Smad3 in vivo requires the action of the Ran GTPase, which mediates release of Smad3 from the complex with importin-β1. 4) Importin-β1, Ran, and p10/NTF2 are sufficient to mediate import of activated Smad3. The data describe a pathway whereby Smad3 phosphorylation by the TGF-β receptor leads to enhanced interaction with importin-β1 and Ran-dependent import and release into the nucleus. The import mechanism of Smad3 shows distinct features from that of the related Smad2 and the structural basis for this difference maps to the divergent sequences of their N-terminal domains.
Resumo:
The extent to which new technological knowledge flows across institutional and national boundaries is a question of great importance for public policy and the modeling of economic growth. In this paper we develop a model of the process generating subsequent citations to patents as a lens for viewing knowledge diffusion. We find that the probability of patent citation over time after a patent is granted fits well to a double-exponential function that can be interpreted as the mixture of diffusion and obsolescense functions. The results indicate that diffusion is geographically localized. Controlling for other factors, within-country citations are more numerous and come more quickly than those that cross country boundaries.
Resumo:
In leaves of Egeria densa Planchon, N-ethylmaleimide (NEM) and other sulfhydryl-binding reagents induce a temporary increase in nonmitochondrial respiration (ΔQO2) that is inhibited by diphenylene iodonium and quinacrine, two known inhibitors of the plasma membrane NADPH oxidase, and are associated with a relevant increase in electrolyte leakage (M. Bellando, S. Sacco, F. Albergoni, P. Rocco, M.T. Marré [1997] Bot Acta 110: 388–394). In this paper we report data indicating further analogies between the oxidative burst induced by sulfhydryl blockers in E. densa and that induced by pathogen-derived elicitors in animal and plant cells: (a) NEM- and Ag+-induced ΔQO2 was associated with H2O2 production and both effects depended on the presence of external Ca2+; (b) Ca2+ influx was markedly increased by treatment with NEM; (c) the Ca2+ channel blocker LaCl3 inhibited ΔQO2, electrolyte release, and membrane depolarization induced by the sulfhydryl reagents; and (d) LaCl3 also inhibited electrolyte leakage induced by the direct infiltration of the leaves with H2O2. These results suggest a model in which the interaction of sulfhydryl blockers with sulfhydryl groups of cell components would primarily induce an increase in the Ca2+ cytosolic concentration, followed by membrane depolarization and activation of a plasma membrane NADPH oxidase. This latter effect, producing active oxygen species, might further influence plasma membrane permeability, leading to the massive release of electrolytes from the tissue.
Resumo:
Se can be accumulated by plants and volatilized to dimethylselenide, providing an attractive technology for Se phytoremediation. To determine the rate-limiting steps in Se volatilization from selenate and selenite, time- and concentration-dependent kinetics of Se accumulation and volatilization were studied in Indian mustard (Brassica juncea). Time-dependent kinetic studies showed that selenate was taken up 2-fold faster than selenite. Selenate was rapidly translocated to the shoot, away from the root, the site of volatilization, whereas only approximately 10% of the selenite was translocated. For both selenate- and selenite-supplied plants, Se accumulation and volatilization increased linearly with external Se concentration up to 20 μm; volatilization rates were also linearly correlated with root Se concentrations. Se-volatilization rates were 2- to 3-fold higher from plants supplied with selenite compared with selenate. Se speciation by x-ray absorption spectroscopy revealed that selenite-supplied plants accumulated organic Se, most likely selenomethionine, whereas selenate-supplied plants accumulated selenate. Our data suggest that Se volatilization from selenate is limited by the rate of selenate reduction, as well as by the availability of Se in roots, as influenced by uptake and translocation. Se volatilization from selenite may be limited by selenite uptake and by the conversion of selenomethionine to dimethylselenide.
Resumo:
The invasion of sodium spikes from the soma into dendrites was studied in hippocampal pyramidal cells by simultaneous extracellular and intracellular recordings in anesthetized rats and by simultaneous extracellular recordings of the somatic and dendritic potentials in freely behaving animals. During complex-spike patterns, recorded in the immobile or sleeping animal, dendritic invasion of successive spikes was substantially attenuated. Complex-spike bursts occurred in association with population discharge of CA3-CA1 pyramidal cells (sharp wave field events). Synaptic inhibition reduced the amplitude of sodium spikes in the dendrites and prevented the occurrence of calcium spikes. These findings indicate that (i) the voltage-dependent calcium influx into the dendrites is under the control of inhibitory neurons and (ii) the temporal coincidence of synaptic depolarization and activation of voltage-dependent calcium conductances by the backpropagating spikes during sharp wave bursts may be critical for synaptic plasticity in the intact hippocampus.
Resumo:
The dwarfin protein family has been genetically implicated in transforming growth factor beta (TGF-beta)-like signaling pathways in Drosophila and Caenorhabditis elegans. To investigate the role of these proteins in mammalian signaling pathways, we have isolated and studied two murine dwarfins, dwarfin-A and dwarfin-C. Using antibodies against dwarfin-A and dwarfin-C, we show that these two dwarfins and an immunogenically related protein, presumably also a dwarfin, are phosphorylated in a time- and dose-dependent manner in response to TGF-beta. Bone morphogenetic protein 2, a TGF-beta superfamily ligand, induces phosphorylation of only the related dwarfin protein. Thus, TGF-beta superfamily members may use overlapping yet distinct dwarfins to mediate their intracellular signals. Furthermore, transient overexpression of either dwarfin-A or dwarfin-C causes growth arrest, implicating the dwarfins in growth regulation. This work provides strong biochemical and preliminary functional evidence that dwarfin-A and dwarfin-C represent prototypic members of a family of mammalian proteins that may serve as mediators of signaling pathways for TGF-beta superfamily members.
Resumo:
Arachidonic acid (AA) metabolites derived from both cyclooxygenase (COX) and lipoxygenase (LOX) pathways transduce a variety of signals related to cell growth. Here, we report that the AA LOX pathway also functions as a critical regulator of cell survival and apoptosis. Rat Walker 256 (W256) carcinosarcoma cells express 12-LOX and synthesize 12(S)- and 15(S)-hydroxyeicosatetraenoic acids as their major LOX metabolites. W256 cells transfected with 12-LOX-specific antisense oligonucleotide or antisense oligonucleotides directed to conserved regions of LOXs underwent time- and dose-dependent apoptosis. Likewise, treatment of W256 cells with various LOX but not COX inhibitors induced apoptotic cell death, which could be partially inhibited by exogenous 12(S)- or 15(S)-hydroxyeicosatetraenoic acids. The W256 cell apoptosis induced by antisense oligos and LOX inhibitors was followed by a rapid downregulation of bcl-2 protein, a dramatic decrease in the bcl-2/bax ratio, and could be suppressed by bcl-2 overexpression. In contrast, p53, which is wild type in W256 cells, did not undergo alterations during apoptosis induction. The results suggest that the LOX pathway plays an important physiological role in regulating apoptosis.
Resumo:
The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance Dc, apparent fracture energy at a rupture front, time-dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of Dc apply to faults in nature. However, scaling of Dc is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks.
Resumo:
We study a simple antiplane fault of finite length embedded in a homogeneous isotropic elastic solid to understand the origin of seismic source heterogeneity in the presence of nonlinear rate- and state-dependent friction. All the mechanical properties of the medium and friction are assumed homogeneous. Friction includes a characteristic length that is longer than the grid size so that our models have a well-defined continuum limit. Starting from a heterogeneous initial stress distribution, we apply a slowly increasing uniform stress load far from the fault and we simulate the seismicity for a few 1000 events. The style of seismicity produced by this model is determined by a control parameter associated with the degree of rate dependence of friction. For classical friction models with rate-independent friction, no complexity appears and seismicity is perfectly periodic. For weakly rate-dependent friction, large ruptures are still periodic, but small seismicity becomes increasingly nonstationary. When friction is highly rate-dependent, seismicity becomes nonperiodic and ruptures of all sizes occur inside the fault. Highly rate-dependent friction destabilizes the healing process producing premature healing of slip and partial stress drop. Partial stress drop produces large variations in the state of stress that in turn produce earthquakes of different sizes. Similar results have been found by other authors using the Burridge and Knopoff model. We conjecture that all models in which static stress drop is only a fraction of the dynamic stress drop produce stress heterogeneity.
Resumo:
Blastocyst-derived pluripotent mouse embryonic stem cells can differentiate in vitro to form so-called embryoid bodies (EBs), which recapitulate several aspects of murine embryogenesis. We used this in vitro model to study oxygen supply and consumption as well as the response to reduced oxygenation during the earliest stages of development. EBs were found to grow equally well when cultured at 20% (normoxia) or 1% (hypoxia) oxygen during the first 5 days of differentiation. Microelectrode measurements of pericellular oxygen tension within 13- to 14-day-old EBs (diameter 510-890 micron) done at 20% oxygen revealed efficient oxygenation of the EBs' core region. Confocal laser scanning microscopy analysis of EBs incubated with fluorescent dyes that specifically stain living cells confirmed that the cells within an EB were viable. To determine the EBs' capability to sense low oxygen tension and to specifically respond to low ambient oxygen by modulating gene expression we quantified aldolase A and vascular endothelial growth factor (VEGF) mRNAs, since expression of these genes is upregulated by hypoxia in a variety of cells. Compared with the normoxic controls, we found increased aldolase A and VEGF mRNA levels after exposing 8- to 9-day-old EBs to 1% oxygen. We propose that EBs represent a powerful tool to study oxygen-regulated gene expression during the early steps of embryogenesis, where the preimplantation conceptus resides in a fluid environment with low oxygen tension until implantation and vascularization allow efficient oxygenation.
Resumo:
The mechanism by which the endogenous vasodilator adenosine causes ATP-sensitive potassium (KATP) channels in arterial smooth muscle to open was investigated by the whole-cell patch-clamp technique. Adenosine induced voltage-independent, potassium-selective currents, which were inhibited by glibenclamide, a blocker of KATP currents. Glibenclamide-sensitive currents were also activated by the selective adenosine A2-receptor agonist 2-p-(2-carboxethyl)-phenethylamino-5'-N- ethylcarboxamidoadenosine hydrochloride (CGS-21680), whereas 2-chloro-N6-cyclopentyladenosine (CCPA), a selective adenosine A1-receptor agonist, failed to induce potassium currents. Glibenclamide-sensitive currents induced by adenosine and CGS-21680 were largely reduced by blockers of the cAMP-dependent protein kinase (Rp-cAMP[S], H-89, protein kinase A inhibitor peptide). Therefore, we conclude that adenosine can activate KATP currents in arterial smooth muscle through the following pathway: (i) Adenosine stimulates A2 receptors, which activates adenylyl cyclase; (ii) the resulting increase intracellular cAMP stimulates protein kinase A, which, probably through a phosphorylation step, opens KATP channels.
Resumo:
V(D)J rearrangement is the molecular mechanism by which an almost infinite array of specific immune receptors are generated. Defects in this process result in profound immunodeficiency as is the case in the C.B-17 SCID mouse or in RAG-1 (recombination-activating gene 1) or RAG-2 deficient mice. It has recently become clear that the V(D)J recombinase most likely consists of both lymphoid-specific factors and ubiquitously expressed components of the DNA double-strand break repair pathway. The deficit in SCID mice is in a factor that is required for both of these pathways. In this report, we show that the factor defective in the autosomal recessive severe combined immunodeficiency of Arabian foals is required for (i) V(D)J recombination, (ii) resistance to ionizing radiation, and (iii) DNA-dependent protein kinase activity.
Resumo:
Articular cartilage chondrocytes have the unique ability to elaborate large amounts of extracellular pyrophosphate (PPi), and transforming growth factor beta (TGF beta) appears singular among cartilage regulatory factors in stimulating PPi production. TGF beta caused a time and dose-dependent increase in intracellular and extracellular PPi in human articular chondrocyte cultures. TGF beta and interleukin 1 beta (IL-1 beta) antagonistically regulate certain chondrocyte functions. IL-1 beta profoundly inhibited basal and TGF beta-induced PPi elaboration. To address mechanisms involved with the regulation of PPi synthesis by IL-1 beta and TGF beta, we analyzed the activity of the PPi-generating enzyme NTP pyrophosphohydrolase (NTPPPH) and the PPi-hydrolyzing enzyme alkaline phosphatase. Human chondrocyte NTPPPH activity was largely attributable to plasma cell membrane glycoprotein 1, PC-1. Furthermore, TGF beta induced comparable increases in the activity of extracellular PPi, intracellular PPi, and cellular NTPPPH and in the levels of PC-1 protein and mRNA in chondrocytes as well as a decrease in alkaline phosphatase. All of these TGF beta-induced responses were completely blocked by IL-1 beta. Thus, IL-1 beta may be an important regulator of mineralization in chondrocytes by inhibiting TGF beta-induced PPi production and PC-1 expression.