20 resultados para TRANSIENTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the molecular basis of the voltage sensor that triggers excitation–contraction (EC) coupling, the four-domain pore subunit of the dihydropyridine receptor (DHPR) was cut in the cytoplasmic linker between domains II and III. cDNAs for the I-II domain (α1S 1–670) and the III-IV domain (α1S 701-1873) were expressed in dysgenic α1S-null myotubes. Coexpression of the two fragments resulted in complete recovery of DHPR intramembrane charge movement and voltage-evoked Ca2+ transients. When fragments were expressed separately, EC coupling was not recovered. However, charge movement was detected in the I-II domain expressed alone. Compared with I-II and III-IV together, the charge movement in the I-II domain accounted for about half of the total charge (Qmax = 3 ± 0.23 vs. 5.4 ± 0.76 fC/pF, respectively), and the half-activation potential for charge movement was significantly more negative (V1/2 = 0.2 ± 3.5 vs. 22 ± 3.4 mV, respectively). Thus, interactions between the four internal domains of the pore subunit in the assembled DHPR profoundly affect the voltage dependence of intramembrane charge movement. We also tested a two-domain I-II construct of the neuronal α1A Ca2+ channel. The neuronal I-II domain recovered charge movements like those of the skeletal I-II domain but could not assist the skeletal III-IV domain in the recovery of EC coupling. The results demonstrate that a functional voltage sensor capable of triggering EC coupling in skeletal myotubes can be recovered by the expression of complementary fragments of the DHPR pore subunit. Furthermore, the intrinsic voltage-sensing properties of the α1A I-II domain suggest that this hemi-Ca2+ channel could be relevant to neuronal function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in the organization and mechanical properties of the actin network within plant and animal cells are primary responses to cell signaling. These changes are suggested to be mediated through the regulation of G/F-actin equilibria, alterations in the amount and/or type of actin-binding proteins, the binding of myosin to F-actin, and the formation of myosin filaments associated with F-actin. In the present communication, the cell optical displacement assay was used to investigate the role of phosphatases and kinases in modifying the tension and organization within the actin network of soybean cells. The results from these biophysical measurements suggest that: (a) calcium-regulated kinases and phosphatases are involved in the regulation of tension, (b) calcium transients induce changes in the tension and organization of the actin network through the stimulation of proteins containing calmodulin-like domains or calcium/calmodulin-dependent regulatory proteins, (c) myosin and/or actin cross-linking proteins may be the principal regulator(s) of tension within the actin network, and (d) these actin cross-linking proteins may be the principal targets of calcium-regulated kinases and phosphatases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bombesin (BN) acts as an autocrine mitogen in various human cancers. Several pseudononapeptide BN-(6-14) analogs with a reduced peptide bond between positions 13 and 14 have been shown to suppress the mitogenic activity of BN or gastrin-releasing peptide (GRP) when assessed by radioreceptor or proliferation assays and may have significant clinical applications. The search for potent and safe BN antagonists requires the evaluation of a large series of analogs in radioreceptor and proliferation assays. In this paper, we report that the ability of BN analogs to inhibit BN-induced calcium transients in Swiss 3T3 cells shows a high correlation with their inhibitory potency as evaluated by classical proliferation tests. The assay of calcium transients allows a rapid characterization of new BN analogs (in terms of minutes rather than days) and can be adapted as a labor and cost-effective screening step in the selection of potentially relevant BN antagonists for further characterization in cell proliferation systems. We also observed that results from the assay of calcium transients in Swiss 3T3 cells can be correlated with the results of the proliferative response in HT-29 cells, a cell line that does not seem to use the same early transmembrane ionic signal system. This result suggests that the calcium pathway is not mandatory for triggering cell division by the BN receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parathyroid hormone-related protein (PTHrP) is synthesized in the brain, and a single type of cloned receptor for the N-terminal portion of PTHrP and PTH is present in the central nervous system. Nothing is known about the physiological actions or signaling pathways used by PTHrP in the brain. Using cultured rat hippocampal neurons, we demonstrate that N-terminal PTHrP[1-34] and PTH[1-34] signal via cAMP and cytosolic calcium transients. The cAMP response showed strong acute (< or = 6 h) homologous and heterologous desensitization after preincubation with PTHrP or PTH. In contrast, the acute calcium response did not desensitize after preincubation with PTHrP; in fact, preincubation dramatically recruited additional responsive neurons. Unexpectedly, C-terminal PTHrP[107-139], which does not bind or activate the cloned PTH/PTHrP receptor, signaled in neurons via cytosolic calcium but not cAMP. Although some neurons responded to both PTHrP[1-34] and PTHrP[107-139], others responded only to PTHrP[1-34]. We conclude that certain hippocampal neurons exhibit dual signaling in response to PTHrP[1-34] and that some neurons have a receptor for C-terminal PTHrP that signals only via cytosolic calcium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanical signals are important influences on the development and morphology of higher plants. Using tobacco transformed with the Ca(2+)-sensitive luminescent protein aequorin, we recently reported the effects of mechanical signals of touch and wind on the luminescence and thus intracellular calcium of young seedlings. When mesophyll protoplasts are isolated from these transgenic tobacco plants and mechanically stimulated by swirling them in solution, cytoplasmic Ca2+ increases immediately and transiently up to 10 microM, and these transients are unaffected by an excess of EGTA in the medium. The size of the transient effect is related to the strength of swirling. Epidermal strips isolated from transgenic tobacco leaves and containing only viable guard cells and trichomes also respond to the strength of swirling in solution and can increase their cytoplasmic Ca2+ transiently up to 10 microM. Finally, the moss Physcomitrella patens containing recombinant aequorin exhibits transient increases in cytoplasmic Ca2+ up to 5 microM when swirled in solution. This effect is strongly inhibited by ruthenium red. Our data indicate that the effect of mechanical stimulation can be found in a number of different cell types and in a lower plant as well as tobacco and suggest that mechanoperception and the resulting increase in cytoplasmic Ca2+ may be widespread.