28 resultados para Swine Diseases
Resumo:
To improve the efficiency of liposome-mediated DNA transfer as a tool for gene therapy, we have developed a fusigenic liposome vector based on principles of viral cell fusion. The fusion proteins of hemagglutinating virus of Japan (HVJ; also Sendai virus) are complexed with liposomes that encapsulate oligodeoxynucleotide or plasmid DNA. Subsequent fusion of HVJ-liposomes with plasma membranes introduces the DNA directly into the cytoplasm. In addition, a DNA-binding nuclear protein is incorporated into the HVJ-liposome particle to enhance plasmid transgene expression. The fusigenic viral liposome vector has proven to be efficient for the intracellular introduction of oligodeoxynucleotide, as well as intact genes up to 100 kbp, both in vitro and in vivo. Many animal tissues have been found to be suitable targets for fusigenic viral liposome DNA transfer. In the cardiovascular system, we have documented successful cytostatic gene therapy in models of vascular proliferative disease using antisense oligodeoxynucleotides against cell cycle genes, double-stranded oligodeoxynucleotides as "decoys" to trap the transcription factor E2F, and expression of a transgene encoding the constitutive endothelial cell form of nitric oxide synthase. Similar strategies are also effective for the genetic engineering of vein grafts and for the treatment of a mouse model of immune-mediated glomerular disease.
Resumo:
Nerve growth factor (NGF) serum levels were measured in 49 patients with asthma and/or rhinoconjunctivitis and/or urticaria-angioedema. Clinical and biochemical parameters, such as bronchial reactivity, total and specific serum IgE levels, and circulating eosinophil cationic protein levels, were evaluated in relation to NGF values in asthma patients. NGF was significantly increased in the 42 allergic (skin-test- or radioallergosorbent-test-positive) subjects (49.7 +/- 28.8 pg/ml) versus the 18 matched controls (3.8 +/- 1.7 pg/ml; P < 0.001). NGF levels in allergic patients with asthma, rhinoconjunctivitis, and urticaria-angioedema were 132.1 +/- 90.8, 17.6 +/- 6.1, and 7.6 +/- 1.8 pg/ml (P < 0.001, P < 0.002, and P < 0.05 versus controls), respectively. Patients with more than one allergic disease had higher NGF serum values than those with a single disease. When asthma patients were considered as a group, NGF serum values (87.6 +/- 59.8 pg/ml) were still significantly higher than those of control groups (P < 0.001), but allergic asthma patients had elevated NGF serum levels compared with nonallergic asthma patients (132.1 +/- 90.8 versus 4.9 +/- 2.9 pg/ml; P < 0.001). NGF serum levels correlate to total IgE serum values (rho = 0.43; P < 0.02). The highest NGF values were found in patients with severe allergic asthma, a high degree of bronchial hyperreactivity, and high total IgE and eosinophil cationic protein serum levels. This study represents the first observation (that we know of) that NGF is increased in human allergic inflammatory diseases and asthma.
Resumo:
Angiogenesis underlies the majority of eye diseases that result in catastrophic loss of vision. Recent evidence has implicated the integrins alpha v beta 3 and alpha v beta 5 in the angiogenic process. We examined the expression of alpha v beta 3 and alpha v beta 5 in neovascular ocular tissue from patients with subretinal neovascularization from age-related macular degeneration or the presumed ocular histoplasmosis syndrome or retinal neovascularization from proliferative diabetic retinopathy (PDR). Only alpha v beta 3 was observed on blood vessels in ocular tissues with active neovascularization from patients with age-related macular degeneration or presumed ocular histoplasmosis, whereas both alpha v beta 3 and alpha v beta 5 were present on vascular cells in tissues from patients with PDR. Since we observed both integrins on vascular cells from tissues of patients with retinal neovascularization from PDR, we examined the effects of a systemically administered cyclic peptide antagonist of alpha v beta 3 and alpha v beta 5 on retinal angiogenesis in a murine model. This antagonist specifically blocked new blood vessel formation with no effect on established vessels. These results not only reinforce the concept that retinal and subretinal neovascular diseases are distinct pathological processes, but that antagonists of alpha v beta 3 and/or alpha v beta 5 may be effective in treating individuals with blinding eye disease associated with angiogenesis.
Resumo:
We report a previously unappreciated property of the signals that target organelle-specific proteins to their subcellular sites of action. Such targeting sequences are shown to be polymorphic. We discovered this polymorphism when we cloned the mitochondrial manganese-containing superoxide dismutase from cell lines of normal individuals and patients with genetic diseases of premature aging and compared their sequences to each other and to those previously reported. The polymorphism consists of a single nucleotide change in the region of the DNA that encodes the signal sequence such that either an alanine or valine is present. Subsequently, eight cell lines were analyzed and all three possible combinations of the two signal sequences were observed. Such signal sequence polymorphisms could result in diseases of distribution, where essential proteins are not properly targeted, thereby leading to absolute or relative deficiencies of critical enzymes within specific cellular compartments. Progeria and related syndromes may be diseases of distribution.
Resumo:
Five human diseases are due to an excessive number of CAG repeats in the coding regions of five different genes. We have analyzed the repeat regions in four of these genes from nonhuman primates, which are not known to suffer from the diseases. These primates have CAG repeats at the same sites as in human alleles, and there is similar polymorphism of repeat number, but this number is smaller than in the human genes. In some of the genes, the segment of poly(CAG) has expanded in nonhuman primates, but the process has advanced further in the human lineage than in other primate lineages, thereby predisposing to diseases of CAG reiteration. Adjacent to stretches of homogeneous present-day codon repeats, previously existing codons of the same kind have undergone nucleotide substitutions with high frequency. Where these lead to amino acid substitutions, the effect will be to reduce the length of the original homopolymeric stretch in the protein.
Resumo:
Long CTG triplet repeats which are associated with several human hereditary neuromuscular disease genes are stabilized in ColE1-derived plasmids in Escherichia coli containing mutations in the methyl-directed mismatch repair genes (mutS, mutL, or mutH). When plasmids containing (CTG)180 were grown for about 100 generations in mutS, mutL, or mutH strains, 60-85% of the plasmids contained a full-length repeat, whereas in the parent strain only about 20% of the plasmids contained the full-length repeat. The deletions occur only in the (CTG)180 insert, not in DNA flanking the repeat. While many products of the deletions are heterogeneous in length, preferential deletion products of about 140, 100, 60, and 20 repeats were observed. We propose that the E. coli mismatch repair proteins recognize three-base loops formed during replication and then generate long single-stranded gaps where stable hairpin structures may form which can be bypassed by DNA polymerase during the resynthesis of duplex DNA. Similar studies were conducted with plasmids containing CGG repeats; no stabilization of these triplets was found in the mismatch repair mutants. Since prokaryotic and human mismatch repair proteins are similar, and since several carcinoma cell lines which are defective in mismatch repair show instability of simple DNA microsatellites, these mechanistic investigations in a bacterial cell may provide insights into the molecular basis for some human genetic diseases.
Resumo:
We identified an autoantibody that reacts with calpastatin [an inhibitor protein of the calcium-dependent neutral protease calpain (EC 3.4.22.17)]. In early immunoblot studies, sera from patients with rheumatoid arthritis (RA) recognized unidentified 60-, 45-, and 75-kDa proteins in HeLa cell extracts. To identify these autoantigens, we used patient sera to clone cDNAs from a lambda gt11 expression library. We isolated clones of four genes that expressed fusion proteins recognized by RA sera. The 1.2-kb cDNA insert (termed RA-6) appeared to encode a polypeptide corresponding to the 60-kDa antigen from HeLa cells, since antibodies bound to the RA-6 fusion protein also reacted with a 60-kDa HeLa protein. The deduced amino acid sequence of the RA-6 cDNA was completely identical with the C-terminal 178 amino acids of human calpastatin except for one amino acid substitution. Patient sera that reacted with the RA-6 also bound pig muscle calpastatin, and a monoclonal antibody to human calpastatin recognized the RA-6 fusion protein, confirming the identity of RA-6 with calpastatin. Moreover, the purified RA-6 fusion protein inhibited the proteolytic activity of calpain, and IgG from a serum containing anti-calpastatin antibodies blocked the calpastatin activity of the RA-6 fusion protein. Immunoblots of the RA-6 product detected autoantibodies to calpastatin in 57% of RA patients; this incidence was significantly higher than that observed in other systemic rheumatic diseases, including systemic lupus erythematosus (27%), polymyositis/dermatomyositis (24%), systemic sclerosis (38%), and overlap syndrome (29%). Thus, anti-calpastatin antibodies are present most frequently in patients with RA and may participate in pathogenic mechanisms of rheumatic diseases.
Resumo:
Many transcription factors and some other proteins contain glutamine repeats; their abnormal expansion has been linked to several dominantly inherited neuro-degenerative diseases. Having found that poly(L-glutamine) alone forms beta-strands held together by hydrogen bonds between their amide groups, we surmised that glutamine repeats may form polar zippers, an unusual motif for protein-protein interactions. To test this hypothesis, we have engineered a Gly-Gln10-Gly peptide into the inhibitory loop of truncated chymotrypsin inhibitor 2 (CI2), a small protein from barley seeds, by both insertion and replacement. Gel filtration resolved both mutant inhibitors into at least three fractions, which analytical ultracentrifugation identified as monomers, dimers, and trimers of the recombinant protein; the truncated wild-type CI2 formed only monomers. CD difference spectra of the dimers and trimers versus wild type indicated that their glutamine repeats formed beta-pleated sheets, while those of the monomers versus wild type were more suggestive of type I beta-turns. The CD spectra of all three fractions remained unchanged even after incubation at 70 degrees C; neither the dimers nor the trimers dissociated at this temperature. We argue that the stability of all three fractions is due to the multiplicity of hydrogen bonds between extended strands of glutamine repeats in the oligomers or within a beta-hairpin formed by the single glutamine repeat of each monomer. Pathological effects may arise when expanded glutamine repeats cause proteins to acquire excessively high affinities for each other or for other proteins with glutamine repeats.
Resumo:
Gene targeting allows precise, predetermined changes to be made in a chosen gene in the mouse genome. To date, targeting has been used most often for generation of animals completely lacking the product of a gene of interest. The resulting "knockout" mice have confirmed some hypotheses, have upset others, but have rarely been uninformative. Models of several human genetic diseases have been produced by targeting--including Gaucher disease, cystic fibrosis, and the fragile X syndrome. These diseases are primarily determined by defects in single genes, and their modes of inheritance are well understood. When the disease under study has a complex etiology with multiple genetic and environmental components, the generation of animal models becomes more difficult but no less valuable. The problems associated with dissecting out the individual genetic factors also increases substantially and the distinction between causation and correlation is often difficult. To prove causation in a complex system requires rigorous adherence to the principle that the experiments must allow detection of the effects of changing only a single variable at one time. Gene targeting experiments, when properly designed, can test the effects of a precise genetic change completely free from the effects of differences in any other genes (linked or unlinked to the test gene). They therefore allow proofs of causation.
Resumo:
Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.