20 resultados para Sustainble Development Ability (SDA)
Resumo:
The pre-T-cell receptor, composed of the T-cell receptor (TCR) beta chain (TCRbeta), pre-Talpha (pTalpha) chain, and CD3 molecules, has been postulated to be a transducer of signals during the early stages of T-cell development. To examine the function of the transmembrane pTalpha chain during tbymocyte development, we generated pTalpha-/- embryonic stem cells and assayed their ability to differentiate into lymphoid cells in vivo after injection into recombination-activating gene (RAG)-2-deficient blastocysts. Thymocytes representing all stages of T-cell differentiation were detected in the thymus of pTalpha-/- chimeric mice, indicating that thymocyte development can occur without pTalpha. However, greatly reduced thymocyte numbers and substantially increased percentages of both CD4-CD8- thymocytes and TCRgammadelta+ thymocytes suggest that pTalpha plays a critical role in thymocyte expansion. To investigate the role of the pTalpha chain in allelic exclusion at the TCRbeta locus, a functionally rearranged TCRbeta minigene was introduced into pTalpha-/- and pTalpha+/- embryonic stem cells, which were subsequently assayed by RAG-2-deficient blastocyst complementation. In the absence of pTalpha, expression of the transgenic TCRbeta inhibited rearrangement of the endogenous TCRbeta locus to an extent similar to that seen in normal TCRbeta transgenic mice, suggesting that pTalpha may not be required for signaling allelic exclusion at the TCRbeta locus.
Resumo:
Bone morphogenetic protein 4 (BMP-4) induces ventral mesoderm but represses dorsal mesoderm formation in Xenopus embryos. We show that BMP-4 inhibits two signaling pathways regulating dorsal mesoderm formation, the induction of dorsal mesoderm (Spemann organizer) and the dorsalization of ventral mesoderm. Ectopic expression of BMP-4 RNA reduces goosecoid and forkhead-1 transcription in whole embryos and in activin-treated animal cap explants. Embryos and animal caps overexpressing BMP-4 transcribe high levels of genes expressed in ventral mesoderm (Xbra, Xwnt-8, Xpo, Mix.1, XMyoD). The Spemann organizer is ventralized in these embryos; abnormally high levels of Xwnt-8 mRNA and low levels of goosecoid mRNA are detected in the organizer. In addition, the organizer loses the ability to dorsalize neighboring ventral marginal zone to muscle. Overexpression of BMP-4 in ventral mesoderm inhibits its response to dorsalization signals. Ventral marginal zone explants ectopically expressing BMP-4 form less muscle when treated with soluble noggin protein or when juxtaposed to a normal Spemann organizer in comparison to control explants. Endogenous BMP-4 transcripts are downregulated in ventral marginal zone explants dorsalized by noggin, in contrast to untreated explants. Thus, while BMP-4 inhibits noggin protein activity, noggin downregulates BMP-4 expression by dorsalizing ventral marginal zone to muscle. Noggin and BMP-4 activities may control the lateral extent of dorsalization within the marginal zone. Competition between these two molecules may determine the final degree of muscle formation in the marginal zone, thus defining the border between dorsolateral and ventral mesoderm.
Resumo:
Vaccination with live Leishmania major has been shown to yield effective immunization in humans; however, this has been discontinued because of problems associated with virulence of the available vaccine lines. To circumvent this, we tested the ability of a dhfr-ts- null mutant of L. major, obtained by gene targeting, to infect and then to vaccinate mice against challenge with virulent L. major. Survival and replication of dhfr-ts- in macrophages in vitro were dependent upon thymidine, with parasites differentiating into amastigotes prior to destruction. dhfr-ts- parasites persisted in BALB/c mice for up to 2 months, declining with a half-life of 2-3 days. Nonetheless, dhfr-ts- was incapable of causing disease in both susceptible and immunodeficient (nu/nu) BALB/c mice. Animal infectivity could be partially restored by thymidine supplementation. When inoculated by the i.v., s.c., or i.m. routes into mice, dhfr-ts- could elicit substantial resistance to a subsequent challenge with virulent L. major. Thus, Leishmania bearing auxotrophic gene knockouts can be safe and induce protective immunity. Potentially, dhfr-ts- could be used as a platform for delivery of immunogens relevant to other diseases.
Resumo:
The homologous LAG-2 and APX-1 membrane proteins are putative signaling ligands in the GLP-1/LIN-12 signal-transduction pathway in Caenorhabditis elegans. Normally, LAG-2 and APX-1 mediate distinct cell interactions. Here, we demonstrate that APX-1, which normally interacts with GLP-1 in the early embryo, can substitute for LAG-2 throughout development. When expressed under control of the lag-2 promoter, an apx-1 cDNA can completely rescue a lag-2 null mutant. To substitute for LAG-2, APX-1 must be able to interact with both GLP-1 and LIN-12 receptors and to mediate a variety of cell interactions during development. Therefore, APX-1 and LAG-2 are essentially equivalent in their ability to influence receptor activity. On the basis of this result, we suggest that the existence of multiple-signaling ligands in the LIN-12/GLP-1 signal transduction pathway does not reflect the evolution of functionally distinct proteins but rather the imposition of distinct controls of gene expression upon functionally similar proteins. Finally, we propose that the specification of distinct cell fates by the LIN-12/GLP-1 signal-transduction pathway relies on activities functioning downstream of the ligand and receptor, rather than on specific ligand-receptor interactions.
Resumo:
Hippocampal neurons maintained in primary culture recycle synaptic vesicles and express functional glutamate receptors since early stages of neuronal development. By analyzing glutamate-induced cytosolic calcium changes to sense presynaptically released neurotransmitter, we demonstrate that the ability of neurons to release glutamate in the extracellular space is temporally coincident with the property of synaptic vesicles to undergo exocytotic-endocytotic recycling. Neuronal differentiation and maturation of synaptic contacts coincide with a change in the subtype of calcium channels primarily involved in controlling neurosecretion. Whereas omega-agatoxin IVA-sensitive channels play a role in controlling neurotransmitter secretion at all stages of neuronal differentiation, omega-conotoxin GVIA-sensitive channels are primarily involved in mediating glutamate release at early developmental stages only.