34 resultados para Supernumerary embryos


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a great deal of recent attention on the suspected increase in amphibian deformities. However, most reports of amphibian deformities have been anecdotal, and no experiments in the field under natural conditions have been performed to investigate this phenomenon. Under laboratory conditions, a variety of agents can induce deformities in amphibians. We investigated one of these agents, UV-B radiation, in field experiments, as a cause for amphibian deformities. We monitored hatching success and development in long-toed salamanders under UV-B shields and in regimes that allowed UV-B radiation. Embryos under UV-B shields had a significantly higher hatching rate and fewer deformities, and developed more quickly than those exposed to UV-B. Deformities may contribute directly to embryo mortality, and they may affect an individual’s subsequent survival after hatching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innate immunity in Drosophila is characterized by the inducible expression of antimicrobial peptides. We have investigated the development and regulation of immune responsiveness in Drosophila embryos after infection. Immune competence, as monitored by the induction of Cecropin A1-lacZ constructs, was observed first in the embryonic yolk. This observation suggests that the yolk plays an important role in the humoral immune response of the developing embryo by synthesizing antimicrobial peptides. Around midembryogenesis, the response in the yolk was diminished. Simultaneously, Cecropin expression became inducible in a large number of cells in the epidermis, demonstrating that late-stage embryos can synthesize their own antibiotics in the epidermis. This production likely serves to provide the hatching larva with an active antimicrobial barrier and protection against systemic infections. Cecropin expression in the yolk required the presence of a GATA site in the promoter as well as the involvement of the GATA-binding transcription factor Serpent (dGATAb). In contrast, neither the GATA site nor Serpent were necessary for Cecropin expression in the epidermis. Thus, the inducible immune responses in the yolk and in the epidermis can be uncoupled and call for distinct sets of transcription factors. Our data suggest that Serpent is involved in the distinction between a systemic response in the yolk/fat body and a local immune response in epithelial cells. In addition, the present study shows that signal transduction pathways controlling innate and epithelial defense reactions can be dissected genetically in Drosophila embryos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The induction of napin and oleosin gene expression in Brassica napus microspore-derived embryos (MDEs) was studied to assess the possible interaction between abscisic acid (ABA) and jasmonic acid (JA). Napin and oleosin transcripts were detected sooner following treatment with ABA than JA. Treatment of MDEs with ABA plus JA gave an additive accumulation of both napin and oleosin mRNA, the absolute amount being dependent on the concentration of each hormone. Endogenous ABA levels were reduced by 10-fold after treatment with JA, negating the possibility that the observed additive interaction was due to JA-induced ABA biosynthesis. Also, JA did not significantly increase the uptake of [3H-ABA] from the medium into MDEs. This suggests that the additive interaction was not due to an enhanced carrier-mediated ABA uptake by JA. Finally, when JA was added to MDEs that had been treated with the ABA biosynthesis inhibitor fluridone, napin mRNA did not increase. Based on these results with the MDE system, it is possible that embryos of B. napus use endogenous JA to modulate ABA effects on expression of both napin and oleosin. In addition, JA could play a causal role in the reduction of ABA that occurs during late stages of seed development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Caenorhabditis elegans maternal-effect sterile genes, mes-2, mes-3, mes-4, and mes-6, encode nuclear proteins that are essential for germ-line development. They are thought to be involved in a common process because their mutant phenotypes are similar. MES-2 and MES-6 are homologs of Enhancer of zeste and extra sex combs, both members of the Polycomb group of chromatin regulators in insects and vertebrates. MES-3 is a novel protein, and MES-4 is a SET-domain protein. To investigate whether the MES proteins interact and likely function as a complex, we performed biochemical analyses on C. elegans embryo extracts. Results of immunoprecipitation experiments indicate that MES-2, MES-3, and MES-6 are associated in a complex and that MES-4 is not associated with this complex. Based on in vitro binding assays, MES-2 and MES-6 interact directly, via the amino terminal portion of MES-2. Sucrose density gradient fractionation and gel filtration chromatography were performed to determine the Stokes radius and sedimentation coefficient of the MES-2/MES-3/MES-6 complex. Based on those two values, we estimate that the molecular mass of the complex is ≈255 kDa, close to the sum of the three known components. Our results suggest that the two C. elegans Polycomb group homologs (MES-2 and MES-6) associate with a novel partner (MES-3) to regulate germ-line development in C. elegans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence emerging from several laboratories, integrated with new data obtained by searching the genome databases, suggests that the area code hypothesis provides a good heuristic model for explaining the remarkable specificity of cell migration and tissue assembly that occurs throughout embryogenesis. The area code hypothesis proposes that cells assemble organisms, including their brains and nervous systems, with the aid of a molecular-addressing code that functions much like the country, area, regional, and local portions of the telephone dialing system. The complexity of the information required to code cells for the construction of entire organisms is so enormous that we assume that the code must make combinatorial use of members of large multigene families. Such a system would reuse the same receptors as molecular digits in various regions of the embryo, thus greatly reducing the total number of genes required. We present the hypothesis that members of the very large families of olfactory receptors and vomeronasal receptors fulfill the criteria proposed for area code molecules and could serve as the last digits in such a code. We discuss our evidence indicating that receptors of these families are expressed in many parts of developing embryos and suggest that they play a key functional role in cell recognition and targeting not only in the olfactory system but also throughout the brain and numerous other organs as they are assembled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevailing hypothesis on the biosynthesis of erucic acid in developing seeds is that oleic acid, produced in the plastid, is activated to oleoyl-coenzyme A (CoA) for malonyl-CoA-dependent elongation to erucic acid in the cytosol. Several in vivo-labeling experiments designed to probe and extend this hypothesis are reported here. To examine whether newly synthesized oleic acid is directly elongated to erucic acid in developing seeds of Brassica rapa L., embryos were labeled with [14C]acetate, and the ratio of radioactivity of carbon atoms C-5 to C-22 (de novo fatty acid synthesis portion) to carbon atoms C-1 to C-4 (elongated portion) of erucic acid was monitored with time. If newly synthesized 18:1 (oleate) immediately becomes a substrate for elongation to erucic acid, this ratio would be expected to remain constant with incubation time. However, if erucic acid is produced from a pool of preexisting oleic acid, the ratio of 14C in the 4 elongation carbons to 14C in the methyl-terminal 18 carbons would be expected to decrease with time. This labeling ratio decreased with time and, therefore, suggests the existence of an intermediate pool of 18:1, which contributes at least part of the oleoyl precursor for the production of erucic acid. The addition of 2-[{3-chloro-5-(trifluromethyl)-2-pyridinyl}oxyphenoxy] propanoic acid, which inhibits the homodimeric acetyl-CoA carboxylase, severely inhibited the synthesis of [14C]erucic acid, indicating that essentially all malonyl-CoA for elongation of 18:1 to erucate was produced by homodimeric acetyl-CoA carboxylase. Both light and 2-[{3-chloro-5-(trifluromethyl)-2-pyridinyl}oxyphenoxy]-propanoic acid increased the accumulation of [14C]18:1 and the parallel accumulation of [14C]phosphatidylcholine. Taken together, these results show an additional level of complexity in the biosynthesis of erucic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The X chromosome-linked transcription factor GATA-1 is expressed specifically in erythroid, mast, megakaryocyte, and eosinophil lineages, as well as in hematopoietic progenitors. Prior studies revealed that gene-disrupted GATA-1- embryonic stem cells give rise to adult (or definitive) erythroid precursors arrested at the proerythroblast stage in vitro and fail to contribute to adult red blood cells in chimeric mice but did not clarify a role in embryonic (or yolk sac derived) erythroid cells. To examine the consequences of GATA-1 loss on embryonic erythropoiesis in vivo, we inactivated the GATA-1 locus in embryonic stem cells by gene targeting and transmitted the mutated allele through the mouse germ line. Male GATA-1- embryos die between embryonic day 10.5 and 11.5 (E10.5-E11.5) of gestation. At E9.5, GATA-1- embryos exhibit extreme pallor yet contain embryonic erythroid cells arrested at an early proerythroblast-like stage of their development. Embryos stain weakly with benzidine reagent, and yolk sac cells express globin RNAs, indicating globin gene activation in the absence of GATA-1. Female heterozygotes (GATA-1+/-) are born pale due to random inactivation of the X chromosome bearing the normal allele. However, these mice recover during the neonatal period, presumably as a result of in vivo selection for progenitors able to express GATA-1. Our findings conclusively establish the essential role for GATA-1 in erythropoiesis within the context of the intact developing mouse and further demonstrate that the block to cellular maturation is similar in GATA-1- embryonic and definitive erythroid precursors. Moreover, the recovery of GATA-1+/- mice from anemia seen at birth provides evidence indicating a role for GATA-1 at the hematopoietic progenitor cell level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of the hormone erythropoietin and its receptor (EpoR) is though to be required for normal hematopoiesis. To define the role of EpoR in this process, the murine EpoR was disrupted by homologous recombination. Mice lacking the EpoR died in utero at embryonic day 11-12.5 with severe anemia. Embryonic erythropoiesis was markedly diminished, while fetal liver hematopoiesis was blocked at the proerythroblast stage. Other cell types known to express EpoR, including megakaryocytes, mast, and neural cells were morphologically normal. Reverse transcription-coupled PCR analysis of RNA from embryonic yolk sac, peripheral blood, and fetal liver demonstrated near normal transcripts levels for EKLF, thrombopoietin (Tpo), c-MPL, GATA-1, GATA-2, and alpha- and embryonic beta H1-globin but non for adult beta maj-globin. While colony-forming unit-erythroid (CFU-E) and burst-forming unit-erythroid (BFU-E) colonies were not present in cultures derived from EpoR-/- liver or yolk sac cells, hemoglobin-containing BFU-E colonies were detected in cultures treated with recombinant Tpo and Kit ligand or with Tpo and interleukin 3 and 11. Rescued BFU-E colonies expressed adult beta-globin and c-MPL and appeared morphologically normal. Thus, erythroid progenitors are formed in vivo in mice lacking the EpoR, and our studies demonstrate that a signal transmitted through the Tpo receptor c-MPL stimulates proliferation and terminal differentiation of these progenitors in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of ventral mesoderm has been traditionally viewed as a result of a lack of dorsal signaling and therefore assumed to be a default state of mesodermal development. The discovery that bone morphogenetic protein 4 (BMP4) can induce ventral mesoderm led to the suggestion that the induction of the ventral mesoderm requires a different signaling pathway than the induction of the dorsal mesoderm. However, the individual components of this pathway remained largely unknown. Here we report the identification of a novel Xenopus homeobox gene PV.1 (posterior-ventral 1) that is capable of mediating induction of ventral mesoderm. This gene is activated in blastula stage Xenopus embryos, its expression peaks during gastrulation and declines rapidly after neurulation is complete. PV.1 is expressed in the ventral marginal zone of blastulae and later in the posterior ventral area of gastrulae and neurulae. PV.1 is inducible in uncommited ectoderm by the ventralizing growth factor BMP4 and counteracts the dorsalizing effects of the dominant negative BMP4 receptor. Overexpression of PV.1 yields ventralized tadpoles and rescues embryos partially dorsalized by LiCl treatment. In animal caps, PV.1 ventralizes induction by activin and inhibits expression of dorsal specific genes. All of these effects mimic those previously reported for BMP4. These observations suggest that PV.1 is a critical component in the formation of ventral mesoderm and possibly mediates the effects of BMP4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DG42 is one of the main mRNAs expressed during gastrulation in embryos of Xenopus laevis. Here we demonstrate that cells expressing this mRNA synthesize hyaluronan. The cloned DG42 cDNA was expressed in rabbit kidney (RK13) and human osteosarcoma (tk-) cells using a vaccinia virus system. Lysates prepared from infected cells were incubated in the presence of UDP-N-acetylglucosamine and UDP-[14C]glucuronic acid. This yielded a glycosaminoglycan with a molecular mass of about 200,000 Da. Formation of this product was only observed in the presence of both substrates. The glycosaminoglycan could be digested with testicular hyaluronidase and with Streptomyces hyaluronate lyase but not with Serratia chitinase. Hyaluronan synthase activity could also be detected in homogenates of early Xenopus embryos, and the activity was found to correlate with the expression of DG42 mRNA at different stages of development. Synthesis of hyaluronan is thus an early event after midblastula transition, indicating its importance for the ensuing cell movements in the developing embryo. Our results are at variance with a recent report (Semino, C. E. & Robbins, P. W. (1995) Proc. Natl. Acad. Sci. USA 92, 3498-3501) that DG42 codes for an enzyme that catalyzes the synthesis of chitin-like oligosaccharides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinoids are a large family of natural and synthetic compounds related to vitamin A that have pleiotropic effects on body physiology, reproduction, immunity, and embryonic development. The diverse activities of retinoids are primarily mediated by two families of nuclear retinoic acid receptors, the RARs and RXRs. Retinoic acids are thought to be the only natural ligands for these receptors and are widely assumed to be the active principle of vitamin A. However, during an unbiased, bioactivity-guided fractionation of Xenopus embryos, we were unable to detect significant levels of all-trans or 9-cis retinoic acids. Instead, we found that the major bioactive retinoid in the Xenopus egg and early embryo is 4-oxoretinaldehyde, which is capable of binding to and transactivating RARs. In addition to its inherent activity, 4-oxoretinaldehyde appears to be a metabolic precursor of two other RAR ligands, 4-oxoretinoic acid and 4-oxoretinol. The remarkable increase in activity of retinaldehyde and retinol as a consequence of 4-oxo derivatization suggests that this metabolic step could serve a critical regulatory function during embryogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous experiments, the homeodomain proteins even-skipped and fushi-tarazu were found to UV cross-link to a surprisingly wide array of DNA sites in living Drosophila embryos. We now show that UV cross-linking gives a highly accurate measure of DNA binding by these proteins. In addition, the binding of even-skipped and fushi-tarazu proteins has been measured in vitro to the same DNA fragments that were examined in vivo. This analysis shows that these proteins have broad DNA recognition properties in vitro that are likely to be important determinants of their distribution on DNA in vivo, but it also shows that in vitro DNA binding specificity alone is not sufficient to explain the distribution of these proteins in embryos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presomitic and 3- to 12-somite pair cultured mouse embryos were deprived of retinoic acid (RA) by yolk-sac injections of antisense oligodeoxynucleotides for retinol binding protein (RBP). Inhibition of yolk-sac RBP synthesis was verified by immunohistochemistry, and the loss of activity of a lacZ-coupled RA-sensitive promoter demonstrated that embryos rapidly became RA-deficient. This deficiency resulted in malformations of the vitelline vessels, cranial neural tube, and eye, depending upon the stage of embryonic development at the time of antisense injection. Addition of RA to the culture medium at the time of antisense injection restored normal development implicating the role of RBP in embryonic RA synthesis. Furthermore, the induced RA deficiency resulted in early down-regulation of developmentally important genes including TGF-beta1 and Shh.