22 resultados para Stilbene-like ligand photoisomerization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the protective role of the membrane-bound HLA-G1 and HLA-G2 isoforms against natural killer (NK) cell cytotoxicity. For this purpose, HLA-G1 and HLA-G2 cDNAs were transfected into the HLA class I-negative human K562 cell line, a known reference target for NK lysis. The HLA-G1 protein, encoded by a full-length mRNA, presents a structure similar to that of classical HLA class I antigens. The HLA-G2 protein, deduced from an alternatively spliced transcript, consists of the α1 domain linked to the α3 domain. In this study we demonstrate that (i) HLA-G2 is present at the cell surface as a truncated class I molecule associated with β2-microglobulin; (ii) NK cytolysis, observed in peripheral blood mononuclear cells and in polyclonal CD3− CD16+ CD56+ NK cells obtained from 20 donors, is inhibited by both HLA-G1 and HLA-G2; this HLA-G-mediated inhibition is reversed by blocking HLA-G with a specific mAb; this led us to the conjecture that HLA-G is the public ligand for NK inhibitory receptors (NKIR) present in all individuals; (iii) the α1 domain common to HLA-G1 and HLA-G2 could mediate this protection from NK lysis; and (iv) when transfected into the K562 cell line, both HLA-G1 and HLA-G2 abolish lysis by the T cell leukemia NK-like YT2C2 clone due to interaction between the HLA-G isoform on the target cell surface and a membrane receptor on YT2C2. Because NKIR1 and NKIR2, known to interact with HLA-G, were undetectable on YT2C2, we conclude that a yet-unknown specific receptor for HLA-G1 and HLA-G2 is present on these cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It was previously shown that mutations of integrin α4 chain sites, within putative EF-hand-type divalent cation-binding domains, each caused a marked reduction in α4β1-dependent cell adhesion. Some reports have suggested that α-chain “EF-hand” sites may interact directly with ligands. However, we show here that mutations of three different α4 “EF-hand” sites each had no effect on binding of soluble monovalent or bivalent vascular cell adhesion molecule 1 whether measured indirectly or directly. Furthermore, these mutations had minimal effect on α4β1-dependent cell tethering to vascular cell adhesion molecule 1 under shear. However, EF-hand mutants did show severe impairments in cellular resistance to detachment under shear flow. Thus, mutation of integrin α4 “EF-hand-like” sites may impair 1) static cell adhesion and 2) adhesion strengthening under shear flow by a mechanism that does not involve alterations of initial ligand binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD1 is an MHC class I-like antigen-presenting molecule consisting of a heavy chain and β2-microglobulin light chain. The in vitro refolding of synthetic MHC class I molecules has always required the presence of ligand. We report here the use of a folding method using an immobilized chaperone fragment, a protein disulphide isomerase, and a peptidyl-prolyl cis-trans isomerase (oxidative refolding chromatography) for the fast and efficient assembly of ligand-free and ligand-associated CD1a and CD1b, starting with material synthesized in Escherichia coli. The results suggest that “empty” MHC class I-like molecules can assemble and remain stable at physiological temperatures in the absence of ligand. The use of oxidative refolding chromatography thus is extended to encompass complex multisubunit proteins and specifically to members of the extensive, functionally diverse and important immunoglobulin supergene family of proteins, including those for which a ligand has yet to be identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ATP has recently been identified as a fast neurotransmitter in both the central and peripheral nervous systems. Several studies have suggested that ATP can also affect the release of classical neurotransmitters, including acetylcholine with which it is co-released. We have searched for ATP receptors on a cholinergic presynaptic nerve terminal using the calyx-type synapse of the chicken ciliary ganglion. ATP was pulsed onto the terminals under voltage clamp and induced a short latency cation current that exhibited inward rectification and marked desensitization. This current was not seen with adenosine but was mimicked by several sterically restricted ATP analogs and was blocked by suramin. ATP-activated single ion channels exhibited prominent flickering and had a conductance of approximately 17 pS. Our results demonstrate a ligand-gated P2X-like purinergic receptor on a cholinergic presynaptic nerve terminal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tyrosine kinases Flt4, Flt1, and Flk1 (or KDR) constitute a family of endothelial cell-specific receptors with seven immunoglobulin-like domains and a split kinase domain. Flt1 and Flk1 have been shown to play key roles in vascular development; these two receptors bind and are activated by vascular endothelial growth factor (VEGF). No ligand has been identified for Flt4, whose expression becomes restricted during development to the lymphatic endothelium. We have identified cDNA clones from a human glioma cell line that encode a secreted protein with 32% amino acid identity to VEGF. This protein, designated VEGF-related protein (VRP), specifically binds to the extracellular domain of Flt4, stimulates the tyrosine phosphorylation of Flt4 expressed in mammalian cells, and promotes the mitogenesis of human lung endothelial cells. VRP fails to bind appreciably to the extracellular domain of Flt1 or Flk1. The protein contains a C-terminal, cysteine-rich region of about 180 amino acids that is not found in VEGF. A 2.4-kb VRP mRNA is found in several human tissues including adult heart, placenta, ovary, and small intestine and in fetal lung and kidney.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binding of the lipid A portion of bacterial lipopolysaccharide (LPS) to leukocyte CD14 activates phagocytes and initiates the septic shock syndrome. Two lipid A analogs, lipid IVA and Rhodobacter sphaeroides lipid A (RSLA), have been described as LPS-receptor antagonists when tested with human phagocytes. In contrast, lipid IVA activated murine phagocytes, whereas RSLA was an LPS antagonist. Thus, these compounds displayed a species-specific pharmacology. To determine whether the species specificity of these LPS antagonists occurred as a result of interactions with CD14, the effects of lipid IVA and RSLA were examined by using human, mouse, and hamster cell lines transfected with murine or human CD14 cDNA expression vectors. These transfectants displayed sensitivities to lipid IVA and RSLA that reflected the sensitivities of macrophages of similar genotype (species) and were independent of the source of CD14 cDNA. For example, hamster macrophages and hamster fibroblasts transfected with either mouse or human-derived CD14 cDNA responded to lipid IVA and RSLA as LPS mimetics. Similarly, lipid IVA and RSLA acted as LPS antagonists in human phagocytes and human fibrosarcoma cells transfected with either mouse or human-derived CD14 cDNA. Therefore, the target of these LPS antagonists, which is encoded in the genomes of these cells, is distinct from CD14. Although the expression of CD14 is required for macrophage-like sensitivity to LPS, CD14 cannot discriminate between the lipid A moieties of these agents. We hypothesize that the target of the LPS antagonists is a lipid A recognition protein which functions as a signaling receptor that is triggered after interaction with CD14-bound LPS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nerve growth cones isolated from fetal rat brain are highly enriched in a 97-kDa glycoprotein, termed beta gc, that comigrates with the beta subunit of the IGF-I receptor upon two-dimensional PAGE and is disulfide-linked to this receptor's alpha subunit. Antibodies prepared to a conserved domain shared by the insulin and IGF-I receptor beta subunits (AbP2) or to beta gc were used to study receptor distribution further. Subcellular fractionation of the fetal brain segregated most AbP2 immunoreactivity away from growth cones, whereas most beta gc immunoreactivity copurified with growth cones. Experiments involving ligand-activated receptor autophosphorylation confirmed the concentration of IGF-I but not of insulin receptors in growth cone fractions. These results indicate the enrichment of IGF-I receptors in (presumably axonal) growth cones of the differentiating neuron. Furthermore, the segregation of beta gc from AbP2 immunoreactivity suggests that such neurons express an immunochemically distinct variant of the IGF-I receptor beta subunit at the growth cone.