25 resultados para Spinach


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plastid rRNA (rrn) operon in chloroplasts of tobacco (Nicotiana tabacum), maize, and pea is transcribed by the plastid-encoded plastid RNA polymerase from a ς70-type promoter (P1). In contrast, the rrn operon in spinach (Spinacia oleracea) and mustard chloroplasts is transcribed from the distinct Pc promoter, probably also by the plastid-encoded plastid RNA polymerase. Primer-extension analysis reported here indicates that in Arabidopsis both promoters may be active. To understand promoter selection in the plastid rrn operon in the different species, we have tested transcription from the spinach rrn promoter in transplastomic tobacco and from the tobacco rrn promoter in transplastomic Arabidopsis. Our data suggest that transcription of the rrn operon depends on species-specific factors that facilitate transcription initiation by the general transcription machinery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidation of d-ribulose-1,5-bisphosphate (ribulose-P2) during synthesis and/or storage produces d-glycero-2,3-pentodiulose-1,5-bisphosphate (pentodiulose-P2), a potent slow, tight-binding inhibitor of spinach (Spinacia oleracea L.) ribulose-P2 carboxylase/oxygenase (Rubisco). Differing degrees of contamination with pentodiulose-P2 caused the decline in Rubisco activity seen during Rubisco assay time courses to vary between different preparations of ribulose-P2. With some ribulose-P2 preparations, this compound can be the dominant cause of the decline, far exceeding the significance of the catalytic by-product, d-xylulose-1,5-bisphosphate. Unlike xylulose-1,5-bisphosphate, pentodiulose-P2 did not appear to be a significant by-product of catalysis by wild-type Rubisco at saturating CO2 concentration. It was produced slowly during frozen storage of ribulose-P2, even at low pH, more rapidly in Rubisco assay buffers at room temperature, and particularly rapidly on deliberate oxidation of ribulose-P2 with Cu2+. Its formation was prevented by the exclusion of transition metals and O2. Pentodiulose-P2 was unstable and decayed to a variety of other less-inhibitory compounds, particularly in the presence of some buffers. However, it formed a tight, stable complex with carbamylated spinach Rubisco, which could be isolated by gel filtration, presumably because its structure mimics that of the enediol intermediate of Rubisco catalysis. Rubisco catalyzes the cleavage of pentodiulose-P2 by H2O2, producing P-glycolate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphoglucomutase (PGM) catalyzes the interconversion of glucose (Glc)-1- and Glc-6-phosphate in the synthesis and consumption of sucrose. We isolated two maize (Zea mays L.) cDNAs that encode PGM with 98.5% identity in their deduced amino acid sequence. Southern-blot analysis with genomic DNA from lines with different Pgm1 and Pgm2 genotypes suggested that the cDNAs encode the two known cytosolic PGM isozymes, PGM1 and PGM2. The cytosolic PGMs of maize are distinct from a plastidic PGM of spinach (Spinacia oleracea). The deduced amino acid sequences of the cytosolic PGMs contain the conserved phosphate-transfer catalytic center and the metal-ion-binding site of known prokaryotic and eukaryotic PGMs. PGM mRNA was detectable by RNA-blot analysis in all tissues and organs examined except silk. A reduction in PGM mRNA accumulation was detected in roots deprived of O2 for 24 h, along with reduced synthesis of a PGM identified as a 67-kD phosphoprotein on two-dimensional gels. Therefore, PGM is not one of the so-called “anaerobic polypeptides.” Nevertheless, the specific activity of PGM was not significantly affected in roots deprived of O2 for 24 h. We propose that PGM is a stable protein and that existing levels are sufficient to maintain the flux of Glc-1-phosphate into glycolysis under O2 deprivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoluminescence (TL) signals were recorded from grana stacks, margins, and stroma lamellae from fractionated, dark-adapted thylakoid membranes of spinach (Spinacia oleracea L.) in the absence and in the presence of 2,6-dichlorphenylindophenol (DCMU). In the absence of DCMU, the TL signal from grana fractions consisted of a homogenous B-band, which originates from recombination of the semi-quinone QB− with the S2 state of the water-splitting complex and reflects active photosystem II (PSII). In the presence of DCMU, the B-band was replaced by the Q-band, which originates from an S2QA− recombination. Margin fractions mainly showed two TL-bands, the B- and C-bands, at approximately 50°C in the absence of DCMU, and Q- and C-bands in the presence of DCMU. The C-band is ascribed to a TyrD+-QA− recombination. In the absence of DCMU, the fractions of stromal lamellae mainly gave rise to a TL emission at 42°C. The intensity of this band was independent of the number of excitation flashes and was shifted to higher temperatures (52°C) after the addition of DCMU. Based on these observations, this band was considered to be a C-band. After photoinhibitory light treatment of uncoupled thylakoid membranes, the TL intensities of the B- and Q-bands decreased, whereas the intensity at 45°C (C-band) slightly increased. It is proposed that the 42 to 52°C band that was observed in marginal and stromal lamellae and in photoinhibited thylakoid membranes reflects inactive PSII centers that are assumed to be equivalent to inactive PSII QB-nonreducing centers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies were conducted to identify a 64-kD thylakoid membrane protein of unknown function. The protein was extracted from chloroplast thylakoids under low ionic strength conditions and purified to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Four peptides generated from the proteolytic cleavage of the wheat 64-kD protein were sequenced and found to be identical to internal sequences of the chloroplast-coupling factor (CF1) α-subunit. Antibodies for the 64-kD protein also recognized the α-subunit of CF1. Both the 64-kD protein and the 61-kD CF1 α-subunit were present in the monocots barley (Hordeum vulgare), maize (Zea mays), oat (Avena sativa), and wheat (Triticum aestivum); but the dicots pea (Pisum sativum), soybean (Glycine max Merr.), and spinach (Spinacia oleracea) contained only a single polypeptide corresponding to the CF1 α-subunit. The 64-kD protein accumulated in response to high irradiance (1000 μmol photons m−2 s−1) and declined in response to low irradiance (80 μmol photons m−2 s−1) treatments. Thus, the 64-kD protein was identified as an irradiance-dependent isoform of the CF1 α-subunit found only in monocots. Analysis of purified CF1 complexes showed that the 64-kD protein represented up to 15% of the total CF1 α-subunit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Choline monooxygenase (CMO) catalyzes the committing step in the synthesis of glycine betaine, an osmoprotectant accumulated by many plants in response to salinity and drought. To investigate how these stresses affect CMO expression, a spinach (Spinacia oleracea L., Chenopodiaceae) probe was used to isolate CMO cDNAs from sugar beet (Beta vulgaris L., Chenopodiaceae), a salt- and drought-tolerant crop. The deduced beet CMO amino acid sequence comprised a transit peptide and a 381-residue mature peptide that was 84% identical (97% similar) to that of spinach and that showed the same consensus motif for coordinating a Rieske-type [2Fe-2S] cluster. A mononuclear Fe-binding motif was also present. When water was withheld, leaf relative water content declined to 59% and the levels of CMO mRNA, protein, and enzyme activity rose 3- to 5-fold; rewatering reversed these changes. After gradual salinization (NaCl:CaCl2 = 5.7:1, mol/mol), CMO mRNA, protein, and enzyme levels in leaves increased 3- to 7-fold at 400 mm salt, and returned to uninduced levels when salt was removed. Beet roots also expressed CMO, most strongly when salinized. Salt-inducible CMO mRNA, protein, and enzyme activity were readily detected in leaves of Amaranthus caudatus L. (Amaranthaceae). These data show that CMO most probably has a mononuclear Fe center, is inducibly expressed in roots as well as in leaves of Chenopodiaceae, and is not unique to this family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wollastonia biflora (L.) DC. plants accumulate the osmoprotectant 3-dimethylsulfoniopropionate (DMSP), particularly when salinized. DMSP is known to be synthesized in the chloroplast from S-methylmethionine (SMM) imported from the cytosol, but the sizes of the chloroplastic and extrachloroplastic pools of these compounds are unknown. We therefore determined DMSP and SMM in mesophyll protoplasts and chloroplasts. Salinization with 30% (v/v) artificial seawater increased protoplast DMSP levels from 4.6 to 6.0 μmol mg−1 chlorophyll (Chl), and chloroplast levels from 0.9 to 1.9 μmol mg−1 Chl. The latter are minimum values because intact chloroplasts leaked DMSP during isolation. Correcting for this leakage, it was estimated that in vivo about one-half of the DMSP is chloroplastic and that stromal DMSP concentrations in control and salinized plants are about 60 and 130 mm, respectively. Such concentrations would contribute significantly to chloroplast osmoregulation and could protect photosynthetic processes from stress injury. SMM levels were measured using a novel mass-spectrometric method. About 40% of the SMM was located in the chloroplast in unsalinized W. biflora plants, as was about 80% in salinized plants; the chloroplastic pool in both cases was approximately 0.1 μmol mg−1 Chl. In contrast, ≥85% of the SMM was extrachloroplastic in pea (Pisum sativum L.) and spinach (Spinacia oleracea L.), which lack DMSP. DMSP synthesis may be associated with enhanced accumulation of SMM in the chloroplast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photosynthetic carbon metabolism is initiated by ribulose-bisphosphate carboxylase/oxygenase (Rubisco), which uses both CO2 and O2 as substrates. One 2-phosphoglycolate (P-glycolate) molecule is produced for each O2 molecule fixed. P-glycolate has been considered to be metabolized exclusively via the oxidative photosynthetic carbon cycle. This paper reports an additional pathway for P-glycolate and glycolate metabolism in the chloroplasts. Light-dependent glycolate or P-glycolate oxidation by osmotically shocked chloroplasts from the algae Dunaliella or spinach leaves was measured by three electron acceptors, methyl viologen (MV), potassium ferricyanide, or dichloroindophenol. Glycolate oxidation was assayed with 3-(3,4)-dichlorophenyl)-1,1-dimethylurea (DCMU) as oxygen uptake in the presence of MV at a rate of 9 mol per mg of chlorophyll per h. Washed thylakoids from spinach leaves oxidized glycolate at a rate of 22 mol per mg of chlorophyll per h. This light-dependent oxidation was inhibited completely by SHAM, an inhibitor of quinone oxidoreductase, and 75% by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which inhibits electron transfer from plastoquinone to the cytochrome b6f complex. SHAM stimulated severalfold glycolate excretion by algal cells, Dunaliella or Chlamydomonas, and by isolated Dunaliella chloroplasts. Glycolate and P-glycolate were oxidized about equally well to glyoxylate and phosphate. On the basis of results of inhibitor action, the possible site which accepts electrons from glycolate or P-glycolate is a quinone after the DCMU site but before the DBMIB site. This glycolate oxidation is a light-dependent, SHAM-sensitive, glycolate-quinone oxidoreductase system that is associated with photosynthetic electron transport in the chloroplasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under conditions (0.2% CO2; 1% O2) that allow high rates of photosynthesis, chlorophyll fluorescence was measured simultaneously with carbon assimilation at various light intensities in spinach (Spinacia oleracea) leaves. Using a stoichiometry of 3 ATP/CO2 and the known relationship between ATP synthesis rate and driving force (Delta pH), we calculated the light-dependent pH gradient (Delta pH) across the thylakoid membrane in intact leaves. These Delta pH values were correlated with the photochemical (qP) and nonphotochemical (qN) quenching of chlorophyll fluorescence and with the quantum yield of photosystem II (phiPSII). At Delta pH > 2.1 all three parameters (qP, qN, and phiPSII) changed very steeply with increasing DeltapH (decreasing pH in the thylakoid). The observed pH dependences followed hexacooperative titration curves with slightly different pKa values. The significance of the steep pH dependences with slightly different pKa values is discussed in relation to the regulation of photosynthetic electron transport in intact leaves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flash-induced voltage changes (electrogenic events) in photosystem I particles from spinach, oriented in a phospholipid layer, have been studied at room temperature on a time scale ranging from 1 micros to several seconds. A phospholipid layer containing photosystem I particles was adsorbed to a Teflon film separating two aqueous compartments. Voltage changes were measured across electrodes immersed in the compartments. In the absence of added electron donors and acceptors, a multiphasic voltage increase, associated with charge separation, was followed by a decrease, associated with charge recombination. Several kinetic phases were resolved: a rapid (<1 micros) increase, ascribed to electron transfer from the primary electron donor P700 to the iron-sulfur electron acceptor FB, was followed by a slower, biphasic increase with time constants of 30 and 200 micros. The 30-micros phase is assigned to electron transfer from FB to the iron-sulfur center FA. The voltage decrease had a time constant of 90 ms, ascribed to charge recombination from FA to P700. Upon chemical prereduction of FA and FB the 30- and 200-micros phases disappeared and the decay time constant was accelerated to 330 micros, assigned to charge recombination from the phylloquinone electron acceptor (A1) or the iron-sulfur center FX to P700.