25 resultados para Special Functions and Pathways


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbial pathogens have evolved many ingenious ways to infect their hosts and cause disease, including the subversion and exploitation of target host cells. One such subversive microbe is enteropathogenic Escherichia coli (EPEC). A major cause of infantile diarrhea in developing countries, EPEC poses a significant health threat to children worldwide. Central to EPEC-mediated disease is its colonization of the intestinal epithelium. After initial adherence, EPEC causes the localized effacement of microvilli and intimately attaches to the host cell surface, forming characteristic attaching and effacing (A/E) lesions. Considered the prototype for a family of A/E lesion-causing bacteria, recent in vitro studies of EPEC have revolutionized our understanding of how these pathogens infect their hosts and cause disease. Intimate attachment requires the type III-mediated secretion of bacterial proteins, several of which are translocated directly into the infected cell, including the bacteria's own receptor (Tir). Binding to this membrane-bound, pathogen-derived protein permits EPEC to intimately attach to mammalian cells. The translocated EPEC proteins also activate signaling pathways within the underlying cell, causing the reorganization of the host actin cytoskeleton and the formation of pedestal-like structures beneath the adherent bacteria. This review explores what is known about EPEC's subversion of mammalian cell functions and how this knowledge has provided novel insights into bacterial pathogenesis and microbe-host interactions. Future studies of A/E pathogens in animal models should provide further insights into how EPEC exploits not only epithelial cells but other host cells, including those of the immune system, to cause diarrheal disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmodesmata mediate direct cell-to-cell communication in plants. One of their significant features is that primary plasmodesmata formed at the time of cytokinesis often undergo structural modifications, by the de novo addition of cytoplasmic strands across cell walls, to become complex secondary plasmodesmata during plant development. Whether such modifications allow plasmodesmata to gain special transport functions has been an outstanding issue in plant biology. Here we present data showing that the cucumber mosaic virus 3a movement protein (MP):green fluorescent protein (GFP) fusion was not targeted to primary plasmodesmata in the epidermis of young or mature leaves in transgenic tobacco (Nicotiana tabacum) plants constitutively expressing the 3a:GFP fusion gene. Furthermore, the cucumber mosaic virus 3a MP:GFP fusion protein produced in planta by biolistic bombardment of the 3a:GFP fusion gene did not traffic between cells interconnected by primary plasmodesmata in the epidermis of a young leaf. In contrast, the 3a MP:GFP was targeted to complex secondary plasmodesmata and trafficked from cell to cell when a leaf reached a certain developmental stage. These data provide the first experimental evidence, to our knowledge, that primary and complex secondary plasmodesmata have different protein-trafficking functions and suggest that complex secondary plasmodesmata may be formed to traffic specific macromolecules that are important for certain stages of leaf development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbohydrates in biological systems are often associated with specific recognition and signaling processes leading to important biological functions and diseases. Considerable efforts have been directed toward understanding and mimicking the recognition processes and developing effective agents to control the processes. The pace of discovery research in glycobiology and development of carbohydrate-based therapeutics, however, has been relatively slow due to the lack of appropriate strategies and methods available for carbohydrate-related research. This review summarizes some of the most recent developments in the field, with particular emphasis on work from our laboratories regarding the use of chemoenzymatic strategies to tackle the carbohydrate recognition problem. Highlights include the study of selectin-carbohydrate and aminoglycoside-RNA interactions and development of agents for the intervention of these recognition processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In insects, neurotransmitter catabolism, melatonin precursor formation, and sclerotization involve arylalkylamine N-acetyltransferase (aaNAT, EC 2.3.1.87) activity. It is not known if one or multiple aaNAT enzymes are responsible for these activities. We recently have purified an aaNAT from Drosophila melanogaster. Here, we report the cloning of the corresponding aaNAT cDNA (aaNAT1) that upon COS cell expression acetylates dopamine, tryptamine, and the immediate melatonin precursor serotonin. aaNAT1 represents a novel gene family unrelated to known acetyl-transferases, except in two weakly conserved amino acid motifs. In situ hybridization studies of aaNAT1 mRNA in embryos reveal hybridization signals in the brain, the ventral cord, the gut, and probably in oenocytes, indicating a broad tissue distribution of aaNAT1 transcripts. Moreover, in day/ night studies we demonstrate a diurnal rhythm of melatonin concentration without a clear-cut change in aaNAT1 mRNA levels. The data suggest that tissue-specific regulation of aaNAT1 may be associated with different enzymatic functions and do not exclude the possibility of additional aaNAT genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients suffering from schizophrenia display subtle cognitive abnormalities that may reflect a difficulty in rapidly coordinating the steps that occur in a variety of mental activities. Working interactively with the prefrontal cortex, the cerebellum may play a role in coordinating both motor and cognitive performance. This positron-emission tomography study suggests the presence of a prefrontal-thalamic-cerebellar network that is activated when normal subjects recall complex narrative material, but is dysfunctional in schizophrenic patients when they perform the same task. These results support a role for the cerebellum in cognitive functions and suggest that patients with schizophrenia may suffer from a "cognitive dysmetria" due to dysfunctional prefrontal-thalamic-cerebellar circuitry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the vertebrate retina, the light responses of post-receptor neurons depend on the ambient or background illumination. Using intracellular recording, we have found that a circadian clock regulates the light responses of dark-adapted fish cone horizontal cells. Goldfish were maintained on a 12-hr light/12-hr dark cycle. At different times of the day or night, retinas were superfused in darkness for 90 min ("prolonged darkness"), following which horizontal cells were impaled without the aid of any light flashes. In some of the experiments, fish were kept in constant darkness for 3-48 hr prior to surgery. After prolonged darkness during the night, but not during the day, the light responses of L-type cone horizontal cells resembled those of rod horizontal cells with respect to threshold, waveform, intensity-response functions, and spectral sensitivity. Following light sensitization during the night and day, the light responses of rod and cone horizontal cells were clearly different with respect to threshold, waveform, intensity-response functions, and spectral sensitivity. Under conditions of constant darkness for two full light/dark cycles, average responses of cone horizontal cells to a bright light stimulus during the subjective day were greater than during the subjective night. Prior reversal of the light/dark cycle reversed the 24-hr rhythm of cone horizontal cell responses to bright lights. In addition, following one full cycle of constant darkness, average cone horizontal cell spectral sensitivity during the subjective night closely matched that of rod horizontal cells, whereas average cone horizontal cell spectral sensitivity during the subjective day was similar to that of red (625 nm) cones. These results indicate that the effects of dark adaptation depend on the time of day and are regulated by a circadian clock so that cone input to cone horizontal cells predominates in the day and rod input predominates in the night.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hypothesis that age-associated impairment of cognitive and motor functions is due to oxidative molecular damage was tested in the mouse. In a blind study, senescent mice (aged 22 months) were subjected to a battery of behavioral tests for motor and cognitive functions and subsequently assayed for oxidative molecular damage as assessed by protein carbonyl concentration in different regions of the brain. The degree of age-related impairment in each mouse was determined by comparison to a reference group of young mice (aged 4 months) tested concurrently on the behavioral battery. The age-related loss of ability to perform a spatial swim maze task was found to be positively correlated with oxidative molecular damage in the cerebral cortex, whereas age-related loss of motor coordination was correlated with oxidative molecular damage within the cerebellum. These results support the view that oxidative stress is a causal factor in brain senescence. Furthermore, the findings suggest that age-related declines of cognitive and motor performance progress independently, and involve oxidative molecular damage within different regions of the brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computer analysis of 2328 protein sequences comprising about 60% of the Escherichia coli gene products was performed using methods for database screening with individual sequences and alignment blocks. A high fraction of E. coli proteins--86%--shows significant sequence similarity to other proteins in current databases; about 70% show conservation at least at the level of distantly related bacteria, and about 40% contain ancient conserved regions (ACRs) shared with eukaryotic or Archaeal proteins. For > 90% of the E. coli proteins, either functional information or sequence similarity, or both, are available. Forty-six percent of the E. coli proteins belong to 299 clusters of paralogs (intraspecies homologs) defined on the basis of pairwise similarity. Another 10% could be included in 70 superclusters using motif detection methods. The majority of the clusters contain only two to four members. In contrast, nearly 25% of all E. coli proteins belong to the four largest superclusters--namely, permeases, ATPases and GTPases with the conserved "Walker-type" motif, helix-turn-helix regulatory proteins, and NAD(FAD)-binding proteins. We conclude that bacterial protein sequences generally are highly conserved in evolution, with about 50% of all ACR-containing protein families represented among the E. coli gene products. With the current sequence databases and methods of their screening, computer analysis yields useful information on the functions and evolutionary relationships of the vast majority of genes in a bacterial genome. Sequence similarity with E. coli proteins allows the prediction of functions for a number of important eukaryotic genes, including several whose products are implicated in human diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To elucidate the functions of human immunodeficiency virus type 1 (HIV-1) genes in a nonhuman primate model, we have constructed infectious recombinant viruses (chimeras) between the pathogenic molecular clone of simian immunodeficiency virus (SIV) SIVmac239 and molecular clones of HIV-1 that differ in phenotypic properties controlled by the env gene. HIV-1SF33 is a T-cell-line-tropic virus which induces syncytia, and HIV-1SF162 is a macrophage-tropic virus that does not induce syncytia. A DNA fragment encoding tat, rev, and env (gp160) of SIVmac239 has been replaced with the counterpart genetic region of HIV-1SF33 and HIV-1SF162 to derive chimeric recombinant simian/human immunodeficiency virus (SHIV) strains SHIVSF33 and SHIVSF162, respectively. In the acute infection stage, macaques inoculated with SHIVSF33 had levels of viremia similar to macaques infected with SIVmac239, whereas virus loads were 1/10th to 1/100th those in macaques infected with SHIVSF162. Of note is the relatively small amount of virus detected in lymph nodes of SHIVSF162-infected macaques. In the chronic infection stage, macaques infected with SHIVSF33 also showed higher virus loads than macaques infected with SHIVSF162. Virus persists for over 1 year, as demonstrated by PCR for amplification of viral DNA in all animals and by virus isolation in some animals. Antiviral antibodies, including antibodies to the HIV-1 env glycoprotein (gp160), were detected; titers of antiviral antibodies were higher in macaques infected with SHIVSF33 than in macaques infected with SHIVSF162. Although virus has persisted for over 1 year after inoculation, these animals have remained healthy with no signs of immunodeficiency. These findings demonstrate the utility of the SHIV/macaque model for analyzing HIV-1 env gene functions and for evaluating vaccines based on HIV-1 env antigens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survival, T-cell functions, and postmortem histopathology were studied in H-2 congenic strains of mice bearing H-2b, H-2k, and H-2d haplotypes. Males lived longer than females in all homozygous and heterozygous combinations except for H-2d homozygotes, which showed no differences between males and females. Association of heterozygosity with longer survival was observed only with H-2b/H-2b and H-2b/H-2d mice. Analysis using classification and regression trees (CART) showed that both males and females of H-2b homozygous and H-2k/H-2b mice had the shortest life-span of the strains studied. In histopathological analyses, lymphomas were noted to be more frequent in females, while hemangiosarcomas and hepatomas were more frequent in males. Lymphomas appeared earlier than hepatomas or hemangiosarcomas. The incidence of lymphomas was associated with the H-2 haplotype--e.g., H-2b homozygous mice had more lymphomas than did mice of the H-2d haplotype. More vigorous T-cell function was maintained with age (27 months) in H-2d, H-2b/H-2d, and H-2d/H-2k mice as compared with H-2b, H-2k, and H-2b/H-2k mice, which showed a decline of T-cell responses with age.