17 resultados para Sonatas (Organ)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the incidence of Gram-positive sepsis has risen strongly, it is unclear how Gram-positive organisms (without endotoxin) initiate septic shock. We investigated whether two cell wall components from Staphylococcus aureus, peptidoglycan (PepG) and lipoteichoic acid (LTA), can induce the inflammatory response and multiple organ dysfunction syndrome (MODS) associated with septic shock caused by Gram-positive organisms. In cultured macrophages, LTA (10 micrograms/ml), but not PepG (100 micrograms/ml), induces the release of nitric oxide measured as nitrite. PepG, however, caused a 4-fold increase in the production of nitrite elicited by LTA. Furthermore, PepG antibodies inhibited the release of nitrite elicited by killed S. aureus. Administration of both PepG (10 mg/kg; i.v.) and LTA (3 mg/kg; i.v.) in anesthetized rats resulted in the release of tumor necrosis factor alpha and interferon gamma and MODS, as indicated by a decrease in arterial oxygen pressure (lung) and an increase in plasma concentrations of bilirubin and alanine aminotransferase (liver), creatinine and urea (kidney), lipase (pancreas), and creatine kinase (heart or skeletal muscle). There was also the expression of inducible nitric oxide synthase in these organs, circulatory failure, and 50% mortality. These effects were not observed after administration of PepG or LTA alone. Even a high dose of LTA (10 mg/kg) causes only circulatory failure but no MODS. Thus, our results demonstrate that the two bacterial wall components, PepG and LTA, work together to cause systemic inflammation and multiple systems failure associated with Gram-positive organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we show that the mature cochlear neurons are a rich source of acidic fibroblast growth factor (aFGF), which is expressed in the neuronal circuitry consisting of afferent and efferent innervation. The site of action of neuronal aFGF is likely to reside in the organ of Corti, where one of the four known FGF receptor (FGFR) tyrosine kinases--namely, FGFR-3 mRNA--is expressed. Following acoustic overstimulation, known to cause damage to the organ of Corti, a rapid up-regulation of FGFR-3 is evident in this sensory epithelium, at both mRNA and protein levels. The present results provide in vivo evidence for aFGF being a sensory neuron-derived, anterogradely transported factor that may exert trophic effects on a peripheral target tissue. In this sensory system, aFGF, rather than being a neurotrophic factor, seems to promote maintenance of the integrity of the organ of Corti. In addition, aFGF, released from the traumatized nerve endings, may be one of the first signals initiating protective recovery and repair processes following damaging auditory stimuli.