63 resultados para Small interfering RNA (siRNA)
Resumo:
rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin—a major nucleolar RNA-binding protein—contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.
Resumo:
A significant percentage of the gene clusters that contain the human genes for U1 small nuclear RNA (snRNA) or for U2 snRNA have been found associated with small nuclear domains, known as coiled bodies. We show here, by immunofluorescent labeling of human cells, that coiled bodies are enriched in factors required for the transcription of these snRNA genes. The 45-kDa γ-subunit of the transcription factor, proximal element sequence-binding transcription factor (PTF), which is specific for the snRNA genes, was found in high concentrations in coiled bodies, along with the general transcription factor TATA-box binding protein and a subset of RNA polymerase II. We show that the transcription factors and RNA polymerase II are concentrated in irregularly shaped domains that not only overlap with coiled bodies but also extend to their immediate surroundings. Fluorescent in situ hybridization showed that these domains can overlap with U2 snRNA genes adjacent to coiled bodies. In addition, we found the domains to contain newly synthesized RNA, visualized by 5-bromo-uridine triphosphate labeling. Our data suggest that coiled bodies are involved in the expression of snRNA genes, which leads us to propose the model that coiled bodies are associated with snRNA genes to facilitate and regulate their transcription. These findings point to a general principle of higher order organization of gene expression in the nucleus.
Resumo:
Translation inhibitors such as chloramphenicol in prokaryotes or cycloheximide in eukaryotes stabilize many or most cellular mRNAs. In Escherichia coli, this stabilization is ascribed generally to the shielding of mRNAs by stalled ribosomes. To evaluate this interpretation, we examine here how inhibitors affect the stabilities of two untranslated RNAs, i.e., an engineered lacZ mRNA lacking a ribosome binding site, and a small regulatory RNA, RNAI. Whether they block elongation or initiation, all translation inhibitors tested stabilized these RNAs, indicating that stabilization does not necessarily reflect changes in packing or activity of translating ribosomes. Moreover, both the initial RNase E-dependent cleavage of RNAI and lacZ mRNA and the subsequent attack of RNAI by polynucleotide phosphorylase and poly(A)-polymerase were slowed. Among various possible mechanisms for this stabilization, we discuss in particular a passive model. When translation is blocked, rRNA synthesis is known to increase severalfold and rRNA becomes unstable. Meanwhile, the pools of RNase E and polynucleotide phosphorylase, which, in growing cells, are limited because these RNases autoregulate their own synthesis, cannot expand. The processing/degradation of newly synthesized rRNA would then titrate these RNases, causing bulk mRNA stabilization.
Resumo:
Ten novel small nucleolar RNA (snoRNA) gene clusters, consisting of two or three snoRNA genes, respectively, were identified from Arabidopsis thaliana. Twelve of the 25 snoRNA genes in these clusters are homologous to those of yeast and mammals according to the conserved antisense sequences that guide 2′-O-ribose methylation of rRNA. The remaining 13 snoRNA genes, including two 5.8S rRNA methylation guides, are new genes identified from A.thaliana. Interestingly, seven methylated nucleotides, predicted by novel snoRNAs Z41a–Z46, are methylated neither in yeast nor in vertebrates. Using primer extension at low dNTP concentration the six methylation sites were determined as expected. These snoRNAs were recognized as specific guides for 2′-O-ribose methylation of plant rRNAs. Z42, however, did not guide the expected methylation of 25S rRNA in our assay. Thus, its function remains to be elucidated. The intergenic spacers of the gene clusters are rich in uridine (up to 40%) and most of them range in size from 35 to 100 nt. Lack of a conserved promoter element in each spacer and the determination of polycistronic transcription from a cluster by RT–PCR assay suggest that the snoRNAs encoded in the clusters are transcribed as a polycistron under an upstream promoter, and individual snoRNAs are released after processing of the precursor. Numerous snoRNA gene clusters identified from A.thaliana and other organisms suggest that the snoRNA gene cluster is an ancient gene organization existing abundantly in plants.
Resumo:
Chlorarachniophyte algae contain a complex, multi-membraned chloroplast derived from the endosymbiosis of a eukaryotic alga. The vestigial nucleus of the endosymbiont, called the nucleomorph, contains only three small linear chromosomes with a haploid genome size of 380 kb and is the smallest known eukaryotic genome. Nucleotide sequence data from a subtelomeric fragment of chromosome III were analyzed as a preliminary investigation of the coding capacity of this vestigial genome. Several housekeeping genes including U6 small nuclear RNA (snRNA), ribosomal proteins S4 and S13, a core protein of the spliceosome [small nuclear ribonucleoprotein (snRNP) E], and a cip-like protease (clpP) were identified. Expression of these genes was confirmed by combinations of Northern blot analysis, in situ hybridization, immunocytochemistry, and cDNA analysis. The protein-encoding genes are typically eukaryotic in overall structure and their messenger RNAs are polyadenylylated. A novel feature is the abundance of 18-, 19-, or 20-nucleotide introns; the smallest spliceosomal introns known. Two of the genes, U6 and S13, overlap while another two genes, snRNP E and clpP, are cotranscribed in a single mRNA. The overall gene organization is extraordinarily compact, making the nucleomorph a unique model for eukaryotic genomics.
Resumo:
The herpes simplex virus 1 infected cell protein 4 (ICP4) binds to DNA and regulates gene expression both positively and negatively. EAP (Epstein-Barr virus-encoded small nuclear RNA-associated protein) binds to small nonpolyadenylylated nuclear RNAs and is found in nucleoli and in ribosomes, where it is also known as L22. We report that EAP interacts with a domain of ICP4 that is known to bind viral DNA response elements and transcriptional factors. In a gel-shift assay, a glutathione S-transferase (GST)-EAP fusion protein disrupted the binding of ICP4 to its cognate site on DNA in a dose-dependent manner. This effect appeared to be specifically due to EAP binding to ICP4 because (i) GST alone did not alter the binding of ICP4 to DNA, (ii) GST-EAP did not bind to the probe DNA, and (iii) GST-EAP did not influence the binding of the alpha gene trans-inducing factor (alphaTIF or VP16) to its DNA cognate site. Early in infection, ICP4 was dispersed throughout the nucleoplasm, whereas EAP was localized to the nucleoli. Late in infection, EAP was translocated from nucleoli and colocalized with ICP4 in small, dense nuclear structures. The formation of dense structures and the colocalization of EAP and ICP4 did not occur if virus DNA synthesis and late gene expression were prevented by the infection of cells at the nonpermissive temperature with a mutant virus defective in DNA synthesis, or in cells infected and maintained in the presence of phosphonoacetate, which is an inhibitor of viral DNA synthesis. These results suggest that the translocation of EAP from the nucleolus to the nucleoplasm is a viral function and that EAP plays a role in the regulatory functions expressed by ICP4.
Resumo:
The reconstruction of multitaxon trees from molecular sequences is confounded by the variety of algorithms and criteria used to evaluate trees, making it difficult to compare the results of different analyses. A global method of multitaxon phylogenetic reconstruction described here, Bootstrappers Gambit, can be used with any four-taxon algorithm, including distance, maximum likelihood, and parsimony methods. It incorporates a Bayesian-Jeffreys'-bootstrap analysis to provide a uniform probability-based criterion for comparing the results from diverse algorithms. To examine the usefulness of the method, the origin of the eukaryotes has been investigated by the analysis of ribosomal small subunit RNA sequences. Three common algorithms (paralinear distances, Jukes-Cantor distances, and Kimura distances) support the eocyte topology, whereas one (maximum parsimony) supports the archaebacterial topology, suggesting that the eocyte prokaryotes are the closest prokaryotic relatives of the eukaryotes.
Resumo:
A Ca2+-requiring catalytic RNA is shown to create 5′ phosphate–phosphate linkages with all nucleotides and coenzymes including CoA, nicotinamide adenine dinucleotide phosphate, thiamine phosphate, thiamine pyrophosphate, and flavin mononucleotide. In addition to these small molecules, macromolecules such as RNAs with 5′-diphosphates, and nonnucleotide molecules like Nɛ-phosphate arginine and 6-phosphate gluconic acid also react. That is, the self-capping RNA isolate 6 is an apparently universal 5′ phosphate-linker, reacting with any nucleophile containing an unblocked phosphate. These RNA reactions demonstrate a unique RNA catalytic capability and imply versatile and specific posttranscriptional RNA modification by RNA catalysis.
Resumo:
Three small nucleolar RNAs (snoRNAs), E1, E2 and E3, have been described that have unique sequences and interact directly with unique segments of pre-rRNA in vivo. In this report, injection of antisense oligodeoxynucleotides into Xenopus laevis oocytes was used to target the specific degradation of these snoRNAs. Specific disruptions of pre-rRNA processing were then observed, which were reversed by injection of the corresponding in vitro-synthesized snoRNA. Degradation of each of these three snoRNAs produced a unique rRNA maturation phenotype. E1 RNA depletion shut down 18 rRNA formation, without overaccumulation of 20S pre-rRNA. After E2 RNA degradation, production of 18S rRNA and 36S pre-rRNA stopped, and 38S pre-rRNA accumulated, without overaccumulation of 20S pre-rRNA. E3 RNA depletion induced the accumulation of 36S pre-rRNA. This suggests that each of these snoRNAs plays a different role in pre-rRNA processing and indicates that E1 and E2 RNAs are essential for 18S rRNA formation. The available data support the proposal that these snoRNAs are at least involved in pre-rRNA processing at the following pre-rRNA cleavage sites: E1 at the 5′ end and E2 at the 3′ end of 18S rRNA, and E3 at or near the 5′ end of 5.8S rRNA.
Resumo:
Telomerase is a ribonucleoprotein (RNP) particle required for the replication of telomeres. The RNA component, termed hTR, of human telomerase contains a domain structurally and functionally related to box H/ACA small nucleolar RNAs (snoRNAs). Furthermore, hTR is known to be associated with two core components of H/ACA snoRNPs, hGar1p and Dyskerin (the human counterpart of yeast Cbf5p). To assess the functional importance of the association of hTR with H/ACA snoRNP core proteins, we have attempted to express hTR in a genetically tractable system, Saccharomyces cerevisiae. Both mature non-polyadenylated and polyadenylated forms of hTR accumulate in yeast. The former is associated with all yeast H/ACA snoRNP core proteins, unlike TLC1 RNA, the endogenous RNA component of yeast telomerase. We show that the presence of the H/ACA snoRNP proteins Cbf5p, Nhp2p and Nop10p, but not Gar1p, is required for the accumulation of mature non-polyadenylated hTR in yeast, while accumulation of TLC1 RNA is not affected by the absence of any of these proteins. Our results demonstrate that yeast telomerase is unrelated to H/ACA snoRNPs. In addition, they show that the accumulation in yeast of the mature RNA component of human telomerase depends on its association with three of the four core H/ACA snoRNP proteins. It is likely that this is the case in human cells as well.
Resumo:
ADP-ribosylation factor (ARF) GTPases and their regulatory proteins have been implicated in the control of diverse biological functions. Two main classes of positive regulatory elements for ARF have been discovered so far: the large Sec7/Gea and the small cytohesin/ARNO families, respectively. These proteins harbor guanine–nucleotide-exchange factor (GEF) activity exerted by the common Sec7 domain. The availability of a specific inhibitor, the fungal metabolite brefeldin A, has enabled documentation of the involvement of the large GEFs in vesicle transport. However, because of the lack of such tools, the biological roles of the small GEFs have remained controversial. Here, we have selected a series of RNA aptamers that specifically recognize the Sec7 domain of cytohesin 1. Some aptamers inhibit guanine–nucleotide exchange on ARF1, thereby preventing ARF activation in vitro. Among them, aptamer M69 exhibited unexpected specificity for the small GEFs, because it does not interact with or inhibit the GEF activity of the related Gea2-Sec7 domain, a member of the class of large GEFs. The inhibitory effect demonstrated in vitro clearly is observed as well in vivo, based on the finding that M69 produces similar results as a dominant-negative, GEF-deficient mutant of cytohesin 1: when expressed in the cytoplasm of T-cells, M69 reduces stimulated adhesion to intercellular adhesion molecule-1 and results in a dramatic reorganization of F-actin distribution. These highly specific cellular effects suggest that the ARF-GEF activity of cytohesin 1 plays an important role in cytoskeletal remodeling events of lymphoid cells.
Resumo:
Chlorarachniophytes are amoeboid algae with chlorophyll a and b containing plastids that are surrounded by four membranes instead of two as in plants and green algae. These extra membranes form important support for the hypothesis that chlorarachniophytes have acquired their plastids by the ingestion of another eukaryotic plastid-containing alga. Chlorarachniophytes also contain a small nucleus-like structure called the nucleomorph situated between the two inner and the two outer membranes surrounding the plastid. This nucleomorph is a remnant of the endosymbiont's nucleus and encodes, among other molecules, small subunit ribosomal RNA. Previous phylogenetic analyses on the basis of this molecule provided unexpected and contradictory evidence for the origin of the chlorarachniophyte endosymbiont. We developed a new method for measuring the substitution rates of the individual nucleotides of small subunit ribosomal RNA. From the resulting substitution rate distribution, we derived an equation that gives a more realistic relationship between sequence dissimilarity and evolutionary distance than equations previously available. Phylogenetic trees constructed on the basis of evolutionary distances computed by this new method clearly situate the chlorarachniophyte nucleomorphs among the green algae. Moreover, this relationship is confirmed by transversion analysis of the Chlorarachnion plastid small subunit ribosomal RNA.
Resumo:
Transcription of downstream genes in the early operons of phage lambda requires a promoter-proximal element known as nut. This site acts in cis in the form of RNA to assemble a transcription antitermination complex which is composed of lambda N protein and at least four host factors. The nut-site RNA contains a small stem-loop structure called boxB. Here, we show that boxB RNA binds to N protein with high affinity and specificity. While N binding is confined to the 5' subdomain of the stem-loop, specific N recognition relies on both an intact stem-loop structure and two critical nucleotides in the pentamer loop. Substitutions of these nucleotides affect both N binding and antitermination. Remarkably, substitutions of other loop nucleotides also diminish antitermination in vivo, yet they have no detectable effect on N binding in vitro. These 3' loop mutants fail to support antitermination in a minimal system with RNA polymerase (RNAP), N, and the host factor NusA. Furthermore, the ability of NusA to stimulate the formation of the RNAP-boxB-N complex is diminished with these mutants. Hence, we suggest that boxB RNA performs two critical functions in antitermination. First, boxB binds to N and secures it near RNAP to enhance their interaction, presumably by increasing the local concentration of N. Second, boxB cooperates with NusA, most likely to bring N and RNAP in close contact and transform RNAP to the termination-resistant state.
Resumo:
Splicing of nuclear precursors of mRNA (pre-mRNA) involves dynamic interactions between the RNA constituents of the spliceosome. The rearrangement of RNA–RNA interactions, such as the unwinding of the U4/U6 duplex, is believed to be driven by ATP-dependent RNA helicases. We recently have shown that spliceosomal U5 small nuclear ribonucleoproteins (snRNPs) from HeLa cells contain two proteins, U5–200kD and U5–100kD, which share homology with the DEAD/DEXH-box families of RNA helicases. Here we demonstrate that purified U5 snRNPs exhibit ATP-dependent unwinding of U4/U6 RNA duplices in vitro. To identify the protein responsible for this activity, U5 snRNPs were depleted of a subset of proteins under high salt concentrations and assayed for RNA unwinding. The activity was retained in U5 snRNPs that contain the U5–200kD protein but lack U5–100kD, suggesting that the U5–200kD protein could mediate U4/U6 duplex unwinding. Finally, U5–200kD was purified to homogeneity by glycerol gradient centrifugation of U5 snRNP proteins in the presence of sodium thiocyanate, followed by ion exchange chromatography. The RNA unwinding activity was found to reside exclusively with the U5–200kD DEXH-box protein. Our data raise the interesting possibility that this RNA helicase catalyzes unwinding of the U4/U6 RNA duplex in the spliceosome.
Resumo:
In populations that are small and asexual, mutations with slight negative effects on fitness will drift to fixation more often than in large or sexual populations in which they will be eliminated by selection. If such mutations occur in substantial numbers, the combined effects of long-term asexuality and small population size may result in substantial accumulation of mildly deleterious substitutions. Prokaryotic endosymbionts of animals that are transmitted maternally for very long periods are effectively asexual and experience smaller effective population size than their free-living relatives. The contrast between such endosymbionts and related free-living bacteria allows us to test whether a population structure imposing frequent bottlenecks and asexuality does lead to an accumulation of slightly deleterious substitutions. Here we show that several independently derived insect endosymbionts, each with a long history of maternal transmission, have accumulated destabilizing base substitutions in the highly conserved 16S rRNA. Stabilities of Domain I of this subunit are 15–25% lower in endosymbionts than in closely related free-living bacteria. By mapping destabilizing substitutions onto a reconstructed phylogeny, we show that decreased ribosomal stability has evolved separately in each endosymbiont lineage. Our phylogenetic approach allows us to demonstrate statistical significance for this pattern: becoming endosymbiotic predictably results in decreased stability of rRNA secondary structure.