31 resultados para Single family home
Resumo:
Carbohydrate–protein bonds interrupt the rapid flow of leukocytes in the circulation by initiation of rolling and tethering at vessel walls. The cell surface carbohydrate ligands are glycosylated proteins like the mucin P-selectin glycoprotein ligand-1 (PSGL-1), which bind ubiquitously to the family of E-, P-, and L-selectin proteins in membranes of leukocytes and endothelium. The current view is that carbohydrate–selectin bonds dissociate a few times per second, and the unbinding rate increases weakly with force. However, such studies have provided little insight into how numerous hydrogen bonds, a Ca2+ metal ion bond, and other interactions contribute to the mechanical strength of these attachments. Decorating a force probe with very dilute ligands and controlling touch to achieve rare single-bond events, we have varied the unbinding rates of carbohydrate–selectin bonds by detachment with ramps of force/time from 10 to 100,000 pN/sec. Testing PSGL-1, its outer 19 aa (19FT), and sialyl LewisX (sLeX) against L-selectin in vitro on glass microspheres and in situ on neutrophils, we found that the unbinding rates followed the same dependence on force and increased by nearly 1,000-fold as rupture forces rose from a few to ≈200 pN. Plotted on a logarithmic scale of loading rate, the rupture forces reveal two prominent energy barriers along the unbinding pathway. Strengths above 75 pN arise from rapid detachment (<0.01 sec) impeded by an inner barrier that requires a Ca2+ bond between a single sLeX and the lectin domain. Strengths below 75 pN occur under slow detachment (>0.01 sec) impeded by the outer barrier, which appears to involve an array of weak (putatively hydrogen) bonds.
Resumo:
Genomic clones of two nonspecific lipid-transfer protein genes from a drought-tolerant wild species of tomato (Lycopersicon pennellii Corr.) were isolated using as a probe a drought- and abscisic acid (ABA)-induced cDNA clone (pLE16) from cultivated tomato (Lycopersicon esculentum Mill.). Both genes (LpLtp1 and LpLtp2) were sequenced and their corresponding mRNAs were characterized; they are both interrupted by a single intron at identical positions and predict basic proteins of 114 amino acid residues. Genomic Southern data indicated that these genes are members of a small gene family in Lycopersicon spp. The 3′-untranslated regions from LpLtp1 and LpLtp2, as well as a polymerase chain reaction-amplified 3′-untranslated region from pLE16 (cross-hybridizing to a third gene in L. pennellii, namely LpLtp3), were used as gene-specific probes to describe expression in L. pennellii through northern-blot analyses. All LpLtp genes were exclusively expressed in the aerial tissues of the plant and all were drought and ABA inducible. Each gene had a different pattern of expression in fruit, and LpLtp1 and LpLtp2, unlike LpLtp3, were both primarily developmentally regulated in leaf tissue. Putative ABA-responsive elements were found in the proximal promoter regions of LpLtp1 and LpLtp2.
Resumo:
Heteroduplex joints are general intermediates of homologous genetic recombination in DNA genomes. A heteroduplex joint is formed between a single-stranded region (or tail), derived from a cleaved parental double-stranded DNA, and homologous regions in another parental double-stranded DNA, in a reaction mediated by the RecA/Rad51-family of proteins. In this reaction, a RecA/Rad51-family protein first forms a filamentous complex with the single-stranded DNA, and then interacts with the double-stranded DNA in a search for homology. Studies of the three-dimensional structures of single-stranded DNA bound either to Escherichia coli RecA or Saccharomyces cerevisiae Rad51 have revealed a novel extended DNA structure. This structure contains a hydrophobic interaction between the 2′ methylene moiety of each deoxyribose and the aromatic ring of the following base, which allows bases to rotate horizontally through the interconversion of sugar puckers. This base rotation explains the mechanism of the homology search and base-pair switch between double-stranded and single-stranded DNA during the formation of heteroduplex joints. The pivotal role of the 2′ methylene-base interaction in the heteroduplex joint formation is supported by comparing the recombination of RNA genomes with that of DNA genomes. Some simple organisms with DNA genomes induce homologous recombination when they encounter conditions that are unfavorable for their survival. The extended DNA structure confers a dynamic property on the otherwise chemically and genetically stable double-stranded DNA, enabling gene segment rearrangements without disturbing the coding frame (i.e., protein-segment shuffling). These properties may give an extensive evolutionary advantage to DNA.
Resumo:
Despite the fact that Papilio glaucus and Papilio polyxenes share no single hostplant species, both species feed to varying extents on hostplants that contain furanocoumarins. P. glaucus contains two nearly identical genes, CYP6B4v2 and CYP6B5v1, and P. polyxenes contains two related genes, CYP6B1v3 and CYP6B3v2. Except for CYP6B3v2, the substrate specificity of which has not yet been defined, each of the encoded cytochrome P450 monooxygenases (P450s) metabolizes an array of linear furanocoumarins. All four genes are transcriptionally induced in larvae by exposure to the furanocoumarin xanthotoxin; several are also induced by other furanocoumarins. Comparisons of the organizational structures of these genes indicate that all have the same intron/exon arrangement. Sequences in the promoter regions of the P. glaucus CYP6B4v2/CYP6B5v1 genes and the P. polyxenes CYP6B3v2 gene are similar but not identical to the -146 to -97 region of CYP6B1v3 gene, which contains a xanthotoxin-responsive element (XRE-xan) important for basal and xanthotoxin-inducible transcription of CYP6B1v3. Complements of the xenobiotic-responsive element (XRE-AhR) in the dioxin-inducible human and rat CYP1A1 genes also exist in all four promoters, suggesting that these genes may be regulated by dioxin. Antioxidant-responsive elements (AREs) in mouse and rat glutathione S-transferase genes and the Barbie box element (Bar) in the bacterial CYP102 gene exist in the CYP6B1v3, CYP6B4v2, and CYP6B5v1 promoters. Similarities in the protein sequences, intron positions, and xanthotoxin- and xenobiotic-responsive promoter elements indicate that these insect CYP6B genes are derived from a common ancestral gene. Evolutionary comparisons between these P450 genes are the first available for a group of insect genes transcriptionally regulated by hostplant allelochemicals and provide insights into the process by which insects evolve specialized feeding habits.
Resumo:
A unique gene, RBP-MS, spanning over 230 kb in the human chromosome 8p11-12 near the Werner syndrome gene locus is described. The single-copy RBP-MS gene is alternatively spliced, resulting in a family of at least 12 transcripts (average length of 1.5 kb). Nine different types of cDNAs that encode an RNa-binding motif at the N terminus and helix-rich sequences at the C terminus have been identified thus far. Among the 16 exons identified, four 5'-proximal exons contained sequences homologous to the RNA-binding domain of Drosophila couch potato gene. Northern blot analysis showed that the RBP-MS gene was expressed strongly in the heart, prostate, intestine, and ovary, and poorly in the skeletal muscle, spleen, thymus, brain, and peripheral leukocytes. The possible role of this gene in RNA metabolism is discussed.
Resumo:
A minichromosome maintenance (MCM) protein complex has been implicated in restricting DNA replication to once per cell cycle in Xenopus egg extracts, based on the behavior of a single protein, XMCM3. Using a two-hybrid screen with XMCM3, we have identified a novel member of the MCM family in Xenopus that is essential for DNA replication. The protein shows strong homology to Saccharomyces cerevisiae MCM7 (CDC47) and has thus been named XMCM7. XMCM7 is present in a multiprotein complex with other MCM proteins. It binds to chromatin and is displaced from chromatin by the act of replication. XMCM7 does not preferentially colocalize with sites of DNA replication but colocalizes with XMCM3 throughout replication. Immunodepletion of the MCM complex from Xenopus egg extract by anti-XMCM7 antibodies inhibits DNA replication of sperm and permeable HeLa G2 nuclei but not permeable HeLa G1 nuclei. Replication capacity of the Xenopus egg extract immunodepleted of the MCM complex by anti-XMCM7 antibody can be rescued by MCM proteins eluted from anti-XMCM3 antibody. We conclude that both proteins are present in the same complex in Xenopus egg extract throughout the cell cycle, that they remain together after binding to chromatin and during DNA replication, and that they perform similar functions.
Resumo:
Tissue-specific transcription is regulated in part by cell type-restricted proteins that bind to defined sequences in target genes. The DNA-binding domain of these proteins is often evolutionarily conserved. On this basis, liver-enriched transcription factors were classified into five families. We describe here the mammalian prototype of a sixth family, which we therefore call hepatocyte nuclear factor 6 (HNF-6). It activates the promoter of a gene involved in the control of glucose metabolism. HNF-6 contains two different DNA-binding domains. One of these corresponds to a novel type of homeodomain. The other is homologous to the Drosophila cut domain. A similar bipartite sequence is coded by the genome of Caenorhabditis elegans.
Resumo:
Protein tyrosine phosphorylation and dephosphorylation are key regulatory events in T-cell receptor (TCR) signaling. We investigated the role of the tyrosine phosphatase SHPTP1 in TCR signaling by analysis of TCR signal transduction in motheaten (me/me) mice, which lack SHPTP1 expression. As revealed by flow cytometric analysis, thymocyte development was normal in me/me mice. However, me/me thymocytes hyperproliferated (3-to 5-fold) in response to TCR stimulation, whereas their response to interleukin 2 stimulation was unchanged compared with normal thymocytes. TCR-induced hyperproliferation of me/me thymocytes was reproduced in purified single-positive thymocytes. Moreover, me/me thymocytes produced increased amounts of interleukin 2 production upon TCR stimulation. Biochemical analysis revealed that, in response to TCR or TCR/CD4 stimulation, thymocytes lacking SHPTP1 showed increased tyrosyl phosphorylation of several cellular substrates, which correlated with increased activation of the src-family kinases Lck and Fyn. Taken together, our data suggest that SHPTP1 is an important negative regulator of TCR signaling, acting at least in part to inactivate Lck and Fyn.
Resumo:
The three-dimensional structure of protein kinase C interacting protein 1 (PKCI-1) has been solved to high resolution by x-ray crystallography using single isomorphous replacement with anomalous scattering. The gene encoding human PKCI-1 was cloned from a cDNA library by using a partial sequence obtained from interactions identified in the yeast two-hybrid system between PKCI-1 and the regulatory domain of protein kinase C-beta. The PKCI-1 protein was expressed in Pichia pastoris as a dimer of two 13.7-kDa polypeptides. PKCI-1 is a member of the HIT family of proteins, shown by sequence identity to be conserved in a broad range of organisms including mycoplasma, plants, and humans. Despite the ubiquity of this protein sequence in nature, no distinct function has been shown for the protein product in vitro or in vivo. The PKCI-1 protomer has an alpha+beta meander fold containing a five-stranded antiparallel sheet and two helices. Two protomers come together to form a 10-stranded antiparallel sheet with extensive contacts between a helix and carboxy terminal amino acids of a protomer with the corresponding amino acids in the other protomer. PKCI-1 has been shown to interact specifically with zinc. The three-dimensional structure has been solved in the presence and absence of zinc and in two crystal forms. The structure of human PKCI-1 provides a model of this family of proteins which suggests a stable fold conserved throughout nature.
Resumo:
Specific DNA binding to the core consensus site GAGAGAG has been shown with an 82-residue peptide (residues 310-391) taken from the Drosophila transcription factor GAGA. Using a series of deletion mutants, it was demonstrated that the minimal domain required for specific binding (residues 310-372) includes a single zinc finger of the Cys2-His2 family and a stretch of basic amino acids located on the N-terminal end of the zinc finger. In gel retardation assays, the specific binding seen with either the peptide or the whole protein is zinc dependent and corresponds to a dissociation constant of approximately 5 x 10(-9) M for the purified peptide. It has previously been thought that a single zinc finger of the Cys2-His2 family is incapable of specific, high-affinity binding to DNA. The combination of an N-terminal basic region with a single Cys2-His2 zinc finger in the GAGA protein can thus be viewed as a novel DNA binding domain. This raises the possibility that other proteins carrying only one Cys2-His2 finger are also capable of high-affinity specific binding to DNA.
Resumo:
The EVI1 gene, located at chromosome band 3q26, is overexpressed in some myeloid leukemia patients with breakpoints either 5' of the gene in the t(3;3)(q21;q26) or 3' of the gene in the inv(3)(q21q26). EVI1 is also expressed as part of a fusion transcript with the transcription factor AML1 in the t(3;21)(q26;q22), associated with myeloid leukemia. In cells with t(3;21), additional fusion transcripts are AML1-MDS1 and AML1-MDS1-EVI1. MDS1 is located at 3q26 170-400 kb upstream (telomeric) of EVI1 in the chromosomal region in which some of the breakpoints 5' of EVI1 have been mapped. MDS1 has been identified as a single gene as well as a previously unreported exon(s) of EVI1 We have analyzed the relationship between MDS1 and EVI1 to determine whether they are two separate genes. In this report, we present evidence indicating that MDS1 exists in normal tissues both as a unique transcript and as a normal fusion transcript with EVI1, with an additional 188 codons at the 5' end of the previously reported EVI1 open reading frame. This additional region has about 40% homology at the amino acid level with the PR domain of the retinoblastoma-interacting zinc-finger protein RIZ. These results are important in view of the fact that EVI1 and MDS1 are involved in leukemia associated with chromosomal translocation breakpoints in the region between these genes.
Resumo:
The retinoblastoma protein (RB) has been proposed to function as a negative regulator of cell proliferation by complexing with cellular proteins such as the transcription factor E2F. To study the biological consequences of the RB/E2F-1 interaction, point mutants of E2F-1 which fail to bind to RB were isolated by using the yeast two-hybrid system. Sequence analysis revealed that within the minimal 18-amino acid peptide of E2F-1 required for RB binding, five residues, Tyr (position 411), Glu (419), and Asp-Leu-Phe (423-425), are critical. These amino acids are conserved among the known E2F family members. While mutation of any of these five amino acids abolished binding to RB, all mutants retained their full transactivation potential. Expression of mutated E2F-1, when compared with that of wild-type, significantly accelerated entry into S phase and subsequent apoptosis. These results provide direct genetic evidence for the biological significance of the RB/E2F interaction and strongly suggest that the interplay between RB and E2F is critical for proper cell cycle progression.
Resumo:
Caveolin, a 21- to 24-kDa integral membrane protein, is a principal component of caveolae membranes. Caveolin interacts directly with heterotrimeric guanine nucleotide binding proteins (G proteins) and can functionally regulate their activity. Here, an approximately 20-kDa caveolin-related protein, caveolin-2, was identified through microsequencing of adipocyte-derived caveolin-enriched membranes; caveolin was retermed caveolin-1. Caveolins 1 and 2 are similar in most respects. mRNAs for both caveolin-1 and caveolin-2 are most abundantly expressed in white adipose tissue and are induced during adipocyte differentiation. Caveolin-2 colocalizes with caveolin-1, indicating that caveolin-2 also localizes to caveolae. However, caveolin-1 and caveolin-2 differ in their functional interactions with heterotrimeric G proteins, possibly explaining why caveolin-1 and -2 are coexpressed within a single cell.
Resumo:
A family of interferon (IFN) regulatory factors (IRFs) have been shown to play a role in transcription of IFN genes as well as IFN-stimulated genes. We report the identification of a member of the IRF family which we have named IRF-3. The IRF-3 gene is present in a single copy in human genomic DNA. It is expressed constitutively in a variety of tissues and no increase in the relative steady-state levels of IRF-3 mRNA was observed in virus-infected or IFN-treated cells. The IRF-3 gene encodes a 50-kDa protein that binds specifically to the IFN-stimulated response element (ISRE) but not to the IRF-1 binding site PRD-I. Overexpression of IRF-3 stimulates expression of the IFN-stimulated gene 15 (ISG15) promoter, an ISRE-containing promoter. The murine IFNA4 promoter, which can be induced by IRF-1 or viral infection, is not induced by IRF-3. Expression of IRF-3 as a Gal4 fusion protein does not activate expression of a chloramphenicol acetyltransferase reporter gene containing repeats of the Gal4 binding sites, indicating that this protein does not contain the transcription transactivation domain. The high amino acid homology between IRF-3 and ISG factor 3 gamma polypeptide (ISGF3 gamma) and their similar binding properties indicate that, like ISGF3 gamma, IRF-3 may activate transcription by complex formation with other transcriptional factors, possibly members of the Stat family. Identification of this ISRE-binding protein may help us to understand the specificity in the various Stat pathways.
Resumo:
The so-called very low density lipoprotein receptors (VLDLRs) are related to the LDLR gene family. So far, naturally occurring mutations have only been described for the prototype LDLR; in humans, they cause familial hypercholesterolemia. Here we describe a naturally occurring mutation in a VLDLR that causes a dramatic abnormal phenotype. Hens of the mutant restricted-ovulator chicken strain carry a single mutation, lack functional oocyte receptors, are sterile, and display severe hyperlipidemia with associated premature atherosclerosis. The mutation converts a cysteine residue into a serine, resulting in an unpaired cysteine and greatly reduced expression of the mutant avian VLDLR on the oocyte surface. Extraoocytic cells in the mutant produce higher than normal amounts of a differentially spliced form of the receptor that is characteristic for somatic cells but absent from germ cells.