18 resultados para Segment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invariant chain (Ii), a membrane glycoprotein, binds class II major histocompatibility complex (MHC) glycoproteins, probably via its class II-associated Ii peptide (CLIP) segment, and escorts them toward antigen-containing endosomal compartments. We find that a soluble, trimeric ectodomain of Ii expressed and purified from Escherichia coli blocks peptide binding to soluble HLA-DR1. Proteolysis indicates that Ii contains two structural domains. The C-terminal two-thirds forms an alpha-helical domain that trimerizes and interacts with empty HLA-DR1 molecules, augmenting rather than blocking peptide binding. The N-terminal one-third, which inhibits peptide binding, is proteolytically susceptible over its entire length. In the trimer, the N-terminal domains act independently with each CLIP segment exposed and free to bind an MHC class II molecule, while the C-terminal domains act as a trimeric unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies to date have identified only a few proteins that are expressed in a segment-specific manner within the mammalian brain. Here we report that a nonreceptor protein tyrosine phosphatase, PTPH1, is selectively expressed in the adult thalamus. Expression of PTPH1 mRNA is detected in most, but not all, thalamic nuclei. Nuclei that are derived embryonically from the dorsal thalamus and project to the neocortex express this gene, whereas those derived from the ventral thalamus do not. PTPH1 mRNA expression is also restricted to the dorsal thalamus during development and, thus, can serve as a specific marker for the dorsal thalamic nuclei. Since the subcellular localization of PTPH1 protein is not known, its functional role is not clear. However, the restriction of its expression to the thalamic nuclei that have thalamocortical connections suggests that PTPH1 may play a role in the maintenance of these connections or in determining the physiological properties of thalamic relay nuclei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron microscopic visualization indicates that the transcription activator NRI (NTRC) binds with exceptional selectivity and efficiency to a sequence-induced superhelical (spiral) segment inserted upstream of the glnA promoter, accounting for its observed ability to substitute for the natural glnA enhancer. The cooperative binding of NRI to the spiral insert leads to protein oligomerization which, at higher concentration, promotes selective coating of the entire superhelical segment with protein. Localization of NRI at apical loops is observed with negatively supercoiled plasmid DNA. With a linear plasmid, bending of DNA is observed. We confirm that NRI is a DNA-bending protein, consistent with its high affinity for spiral DNA. These results prove that spiral DNA without any homology to the NRI-binding sequence site can substitute for the glnA enhancer by promoting cooperative activator binding to DNA and facilitating protein oligomerization. Similar mechanisms might apply to other prokaryotic and eukaryotic activator proteins that share the ability to bend DNA and act efficiently as multimers.